Conveyors: power-driven – Conveyor section – Live roll
Reexamination Certificate
2001-01-05
2003-02-11
Ellis, Christopher P. (Department: 3651)
Conveyors: power-driven
Conveyor section
Live roll
C198S688100, C198S692000
Reexamination Certificate
active
06516940
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a conveyor apparatus. More particularly, the invention concerns a conveyor for transporting and conveying devices that are sensitive to electric fields and electrostatic discharges.
BACKGROUND OF THE INVENTION
The design and process improvements made in electronic manufacturing technologies such as computer disk drives, microprocessors and memories, and flat panel displays have, and will continue to force orders of magnitude improvement in the process controls of electrostatic discharge (ESD). Clean room material handling systems that support these processes are challenged to simultaneously improve cleanliness and ESD at increasing rates.
Clean room equipment was designed in the early-mid 1980's to operate satisfactorily in Class 1000 and 100 clean rooms, in the early 1990's to Class 10 requirements, and today to Class 1 environments (as defined by FED-STD 209E). Particle size constraints likewise became increasingly stringent, initially from 0.7, then to 0.5 micrometer, more recently to the 0.15 or 0.1 micrometer diameter sizes of today.
Electrostatic charge concerns associated with process equipments were identified by users in the late 1970's and early 80's. Three primary reasons for minimizing static charges are:
1.) Combustible materials or solvent vapors can be ignited by ESD generated arcs from surface potentials of 3000 volts or less.
2.) Dust is attracted by opposite polarity particle charging of a variety of non-conductive products such as plastics, tapes, and certain liquids.
3.) Static sensitive electronic components such as metal-oxide semiconductor (MOS) integrated circuits are vulnerable to ESD events.
Initial industry concerns were brought forth by the MOS semiconductor device producers, with early ESD limits of several hundred volts. These process related ESD requirements were met using rather traditional design and conductive material selections.
In the early 1990's, the disk drive industry began to develop requirements for material handling equipments with surface voltages of much less than one hundred volts. This more stringent specification included use of conductive and anti-static plastics, such as conductive PVCs, acetal with carbon black, conductive foams, and anti-static and hygroscopic materials. These materials were generally sufficient to meet most process applications in combined terms of cleanliness and ESD, but qualification criteria were becoming more stringent and qualification processes/ testing were taking much longer.
In late 1996, the disk drive industry began requesting conveyor surface voltages of twenty volts and less. An informal disk drive industry survey taken in early 1997 showed the simultaneous requirement developing for increased equipment cleanliness, and an order of magnitude reduction in conveyor surface voltage. The new “target” specification being set forth by disk drive manufacturers was pointing toward cleanliness of Class 1 to 10 at particle sizes less than 0.3 micron diameters; and a maximum ESD surface voltage of 5 volts.
Meeting these challenging equipment requirements meant that attention should be paid to surface and product interaction (particulation), surface to product triboelectric charge compatibility, material compositions and outgassing, surface conductivity and charge decay rates, and the sometimes simultaneous testing of critical parameters. In addition to traditional design and additional material concerns, techniques for low voltage measurements for products on moving conveyor surfaces were designed, tested and verified.
The EOS/ESD Association (Electrical OverStress/ElectroStatic Discharge) has established specific terminology associated with surface resistance:
Insulative: R=1 E 10
11
ohms or higher. (S11.11)
Static Dissipative: R=1 E 10
4
OHMS TO 1 E 10
11
ohms (S11.11)
Conductive: R=0 ohms to 1 E 10
4
ohms (S11.11)
Antistatic: R=n/a. Used to define non-triboelectric materials
However, the term “electrically conductive” as used herein includes the range of resistances from zero ohms to about 1×10
7
ohms.
Producing a low ESD conveyor utilizing slippable rollers is a challenge. Typically, the slippable rollers are fabricated from a synthetic material, chosen for low wear, low outgassing, low particulate creation, low noise, but which is electrically insulative. Some slippable roller conveyors have resistances from an outer diameter of a slippable roller to earth ground of 10
12
ohms. Further, the drive pulleys for the roller shafts are chosen for good, long-term wear resistance when driven with a urethane belt. However, the synthetic materials typically chosen for drive pulleys and the urethane belts typically generate thousands of electrostatic volts from a triboelectric effect. Further, typical pulley materials are not electrically conductive.
What is needed is a slippable roller conveyor apparatus that protects the conveyed product from damaging levels of electrostatic discharge. The present invention does this in a novel and unobvious way.
SUMMARY OF THE INVENTION
One aspect of the present invention concerns a conveyor for moving objects. The conveyor includes a plurality of electrically conductive slippable rollers for supporting the objects. The slippable rollers are in electrical communication with a common electrical ground.
Another aspect of the present invention includes a conveyor for moving objects. The conveyor includes a plurality of electrically conductive, non-metallic pulleys that are in electrical communication with an electrical ground.
REFERENCES:
patent: 3171535 (1965-03-01), Harris
patent: 3587524 (1971-06-01), Keating et al.
patent: 3596486 (1971-08-01), Dolder
patent: 3690646 (1972-09-01), Kolibas
patent: 3878933 (1975-04-01), Bauer et al.
patent: 3891868 (1975-06-01), Joyce
patent: 3922661 (1975-11-01), Enabnit et al.
patent: 4079509 (1978-03-01), Jackson et al.
patent: 4196805 (1980-04-01), Banno
patent: 4327482 (1982-05-01), Araki et al.
patent: 4437563 (1984-03-01), Oriol
patent: 4491084 (1985-01-01), Marshall, Jr.
patent: 4573430 (1986-03-01), Benson et al.
patent: 4793459 (1988-12-01), Forknall et al.
patent: 4823942 (1989-04-01), Martin et al.
patent: 4844231 (1989-07-01), Usui
patent: 4867098 (1989-09-01), Thorstenson
patent: 4917226 (1990-04-01), Blöcker
patent: 4930618 (1990-06-01), Roh
patent: 4983148 (1991-01-01), Nakagawa
patent: 4993541 (1991-02-01), Roh
patent: 5040669 (1991-08-01), Blöcker
patent: 5203443 (1993-04-01), Toriumi et al.
patent: 5225852 (1993-07-01), Uchida et al.
patent: 5261754 (1993-11-01), Sugiura
patent: 5280308 (1994-01-01), Takahashi et al.
patent: 5286542 (1994-02-01), Susi et al.
patent: 5348140 (1994-09-01), Clos
patent: 5348164 (1994-09-01), Heppler
patent: 5425611 (1995-06-01), Hughes et al.
patent: 5433308 (1995-07-01), Gagnon
patent: 5452801 (1995-09-01), Horn
patent: 5558205 (1996-09-01), Helgerson et al.
patent: 5558206 (1996-09-01), Helgerson et al.
patent: 5576695 (1996-11-01), Minger et al.
patent: 5645155 (1997-07-01), Houghton
patent: 5678676 (1997-10-01), Pierson
patent: 5690014 (1997-11-01), Larkin
patent: 5740006 (1998-04-01), Larkin
patent: 5745983 (1998-05-01), Quintana et al.
patent: 5875878 (1999-03-01), Pierson
patent: 6053298 (2000-04-01), Nimmo et al.
patent: 6112875 (2000-09-01), Gibson
patent: 6148991 (2000-11-01), Meishner et al.
patent: 6161673 (2000-12-01), Nimmo et al.
Daenzer Klaus P.
Hart Steven L.
Howard Brent R.
Ellis Christopher P.
Ridley Richard
Shuttleworth Inc.
Woodard, Emhardt, Naughton Moriarty & McNett LLP
LandOfFree
Low electrostatic discharge conveyor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low electrostatic discharge conveyor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low electrostatic discharge conveyor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3172608