Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
1997-11-26
2002-03-12
Horlick, Kenneth R. (Department: 1656)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C536S022100, C536S023500
Reexamination Certificate
active
06355451
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to novel polypeptides (LBPs) which bind to low density lipoprotein (LDL), polynucleotides which encode these polypeptides, and treatments, diagnoses and therapeutic agents for atherosclerosis.
BACKGROUND OF THE INVENTION
Atherosclerosis is the principal cause of heart attacks and strokes. It has been reported that about 50% of all deaths in the United States, Europe and Japan are due to atherosclerosis. Atherosclerotic lesions in the arterial wall characterize atherosclerosis. Cholesteryl esters (CE) are present in these atherosclerotic lesions. Low density lipoprotein (LDL) has been shown to be the major carrier of plasma CE, and has been implicated as the agent by which CE enter the atherosclerotic lesions.
Scattered groups of lipid-filled macrophages, called foam cells, are the first visible signs of atherosclerosis and are described as type I lesions. These macrophages are reported to contain CE derived from LDL. The macrophages recognize oxidized LDL, but not native LDL, and become foam cells by phagocytosing oxidized LDL. Larger, more organized collections of foam cells, fatty streaks, represent type II lesions. These lesions further develop into complex lesions called plaques, which can result in impeding the flow of blood in the artery.
It is widely believed that accumulation of LDL in the artery depends on the presence of functionally modified endothelial cells in the arterial wall. It has been reported in animal models of atherosclerosis that LDL, both native LDL and methylated LDL, accumulates focally and irreversibly only at the edges of regenerating endothelial islands in aortic lesions, where functionally modified endothelial cells are present, but not in the centers of these islands where endothelial regeneration is completed. Similarly, LDL accumulates in human atherosclerotic lesions. The mechanism by which the LDL accumulates focally and irreversibly in arterial lesions has not heretofore been understood.
SUMMARY OF THE INVENTION
It is an object of the invention to provide polypeptides which bind to LDL.
It is yet another object of the invention to provide a method for determining if an animal is at risk for atherosclerosis.
It is yet another object of the invention to provide a method for evaluating an agent for use in treating atherosclerosis.
It is yet another object of the invention to provide a method for treating atherosclerosis.
Still another object of the invention is to utilize an LBP (low density lipoprotein binding protein) gene and/or polypeptide, or fragments, analogs and variants thereof, to aid in the treatment, diagnosis and/or identification of therapeutic agents for atherosclerosis.
In one aspect, the invention features an isolated polynucleotide comprising a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9; or a polynucleotide capable of hybridizing to and which is at least about 95% identical to any of the above polynucleotides and wherein the encoded polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polynucleotides wherein the encoded polypeptide is capable of binding to LDL.
In certain embodiments, the polynucleotide comprises the nucleic acid sequence as set forth in SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 or SEQ ID NO:18.
Another aspect of the invention is an isolated polypeptide comprising a polypeptide having the amino acid sequence as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9; or a polypeptide which is at least about 95% identical to any of the above polypeptides and wherein the polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polypeptides wherein the fragment is capable of binding to LDL.
Another aspect of the invention is a method for determining if an animal is at risk for atherosclerosis. An animal is provided. An aspect of LBP metabolism or structure is evaluated in the animal. An abnormality in the aspect of LBP metabolism or structure is diagnostic of being at risk for atherosclerosis.
Another aspect of the invention is a method for evaluating an agent for use in treating atherosclerosis. A test cell, cell-free system or animal is provided. An agent is provided. The agent is administered to the test cell, cell-free system or animal in a therapeutically effective amount. The effect of the agent on an aspect of LBP metabolism or structure is evaluated. A change in the aspect of LBP metabolism or structure is indicative of the usefulness of the agent in treating atherosclerosis.
Another aspect of the invention is a method for evaluating an agent for the ability to alter the binding of LBP polypeptide to a binding molecule, e.g., native LDL, modified LDL, e.g., methylated LDL or oxidized LDL, or an arterial extracellular matrix structural component. An agent is provided. An LBP polypeptide is provided. A binding molecule is provided. The agent, LBP polypeptide and binding molecule are combined. The formation of a complex comprising the LBP polypeptide and binding molecule is detected. An alteration in the formation of the complex in the presence of the agent as compared to in the absence of the agent is indicative of the agent altering the binding of the LBP polypeptide to the binding molecule.
Another aspect of the invention is a method for evaluating an agent for the ability to bind to an LBP polypeptide. An agent is provided. An LBP polypeptide is provided. The agent is contacted with the LBP polypeptide. The ability of the agent to bind to the LBP polypeptide is evaluated.
Another aspect of the invention is a method for evaluating an agent for the ability to bind to a nucleic acid encoding an LBP regulatory sequence. An agent is provided. A nucleic acid encoding an LBP regulatory sequence is provided. The agent is contacted with the nucleic acid. The ability of the agent to bind to the nucleic acid is evaluated.
Another aspect of the invention is a method for treating atherosclerosis in an animal. An animal in need of treatment for atherosclerosis is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the animal in a therapeutically effective amount such that treatment of the atherosclerosis occurs. In certain embodiments, the agent is an LBP polypeptide, e.g., LBP-1, LBP-2 or LBP-3, or a biologically active fragment or analog thereof. In certain embodiments, the agent is a polypeptide of no more than about 100, 50, 30, 20, 10, 5, 4, 3 or 2 amino acid residues in length. In certain embodiments, the agent is a polypeptide having an amino acid sequence that includes at least about 20%, 40%, 60%, 80%, 90%, 95% or 98% acidic amino acid residues.
Another aspect of the invention is a method for treating an animal at risk for atherosclerosis. An animal at risk for atherosclerosis is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the animal in a therapeutically effective amount such that treatment of the animal occurs.
Another aspect of the invention is a method for treating a cell having an abnormality in structure or metabolism of LBP. A cell having an abnormality in structure or metabolism of LBP is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the cell in a therapeutically effective amount such that treatment of the cell occurs.
Another aspect of the invention is a pharmaceutical composition for treating atherosclerosis in an animal comprising a therapeutically effective amount of an agent, the agent being capable of altering an aspect of LBP metabolism or structure in the animal so as to result in treatment of the atherosclerosis, and a pharmaceutically accept
Arjona Anibal A.
Law Simon W.
Lees Ann M.
Lees Robert S.
Boston Heart Foundation, Inc.
Chunduru Suryaprabha
Fish & Richardson P.C.
Horlick Kenneth R.
LandOfFree
Low density lipoprotein binding proteins and their use in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low density lipoprotein binding proteins and their use in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low density lipoprotein binding proteins and their use in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2883261