Low defect axially grown single crystal silicon carbide

Single-crystal – oriented-crystal – and epitaxy growth processes; – Forming from vapor or gaseous state – Fully-sealed or vacuum-maintained chamber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C117S107000, C117S200000, C117S201000, C117S900000, C423S345000

Reexamination Certificate

active

06562130

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the generation of monocrystalline materials and, more particularly, to a method and apparatus for growing monocrystalline silicon carbide.
BACKGROUND OF THE INVENTION
Silicon carbide (SiC) is wide-band-gap semiconductor material that has a number of characteristics that make it an ideal candidate for a variety of semiconductor applications including, but not limited to, light sources, power diodes, field-effect transistors, and photodiodes. The ability to realize the benefits offered by SiC is largely controlled by the purity of the material as well as its structural characteristics.
The methods most commonly used in producing SiC single crystals are sublimation techniques based on the Lely method, this method utilizing vapor-phase crystallization of evaporated solid silicon carbide. (See, for example, U.S. Pat. Ser. Nos. 2,854,364 and 4,866,005). As shown by Karpov et al. in an article entitled Excess Phase Formation During Sublimation Growth of Silicon Carbide, 6th Int. Conf. on Silicon Carbide, Kyoto, Japan, 74-75 (September 1995), in order to achieve SiC monocrystalline growth from vapor without forming secondary-phase inclusions, the external silicon (Si) flux on the growing surface must exceed the carbon (C) flux. The ability to achieve the desired excess silicon flux depends on the temperature of the growing surface and, in the case of sublimation techniques, the composition of the vapor adjacent to the growth surface.
As silicon molecules have the maximum concentration in the gaseous phase, any drift of the substance from the growth zone will result in the vapor phase within the growth zone being depleted of silicon and enriched with carbon. Excessive carbon in the growth zone leads to source graphitization, crystal quality degradation, and eventually the discontinuation of the growth process. On the other hand, excessive silicon in the growth zone may result both in the formation of defects on the growing surface of the SiC crystal, primarily due to the precipitation of excess silicon drops, and in the generation of polytypes differing from the seed polytype. Accordingly, it has been established that the best characteristics for the as-grown SiC single crystal are achieved when the vapor composition in the growth zone is shifted the towards the vapor phase corresponding to the SiC—Si system.
U.S. Pat. Ser. No. 2,854,364 discloses locating SiC powder with a mass of more than three times the mass of the single crystal to be grown in the growth zone in order to maintain a relatively constant vapor phase composition, the powder serving as a source of silicon carbide vapors. As disclosed, the drift of SiC vapors into the space outside the growth zone is balanced by the generation of SiC vapors from the SiC powder. The duration of the stable growth process is limited by the quantity of SiC powder located in the growth zone. Once the source of SiC vapors becomes depleted, the vapor composition shifts to the non-advantageous SiC—C system.
In U.S. Pat. Ser. No. 4,866,005 a technique is disclosed that continuously feeds small portions of SiC powder into a temperature zone of the growth chamber. Although this technique does allow a SiC—Si system to be maintained indefinitely, it is an inefficient process due to the SiC material consumed in addition to the SiC source as well as the growth zone geometry. As disclosed, the evaporating surface of the SiC vapor source is approximately 10 centimeters from the growing surface of the seed crystal, a distance that far exceeds the Si, Si
2
C, SiC
2
molecular track length at the working pressure in the growth zone.
U.S. Pat. Ser. No. 4,147,572 discloses a growth technique in which the evaporating surface of the SiC source and the growth surface of the SiC seed crystal are arranged in parallel at a distance that is less than 20 percent of the maximum linear dimension of the source. The single crystals are grown in a graphite crucible in an inert gas atmosphere at temperatures of 1600 to 2000° C. with an axial thermal gradient of 5 to 200° C. per centimeter. This technique is limited to relatively small crystals, typically less than 1 millimeter thick, due to a sharp drop in the growth rate as the crystallization time increases. The change in growth rate is due to the silicon at the edge of the growth zone being volatilized, thereby causing excessive carbon to be released from the evaporating surface of the SiC source and the growing surface of the grown crystal. Single crystals obtained by this technique show defects such as secondary-phase inclusions (predominantly, graphite), micropipes with a density of more than 100 per square centimeter, and dislocations of at least 10
4
per square centimeter. These crystals also have relatively high concentrations of residual impurities such as boron, oxygen, etc.
In an article by D. Hofmann et al. entitled The Use of Tantalum Container Material for Quality Improvement of SiC Crystals Grown by the Sublimation Technique, 6th Int. Conf. on Silicon Carbide, Kyoto, Japan, 15 (September 1995), it was shown that the inclusion of tantalum (Ta) during the sublimation growth of monocrystalline SiC resulted in the vapor medium produced in the growth zone being close to the SiC—Si system. The favorable aspects were found to occur both in an inert gas atmosphere and in vacuum. Unfortunately it was also found that during the early stages of growth, secondary-phase inclusions of tantalum or its compounds were formed. An increased concentration of dissolved tantalum in the monocrystalline SiC was also noted. Lastly, due to the carbon enrichment of the vapor phase that results from silicon drifting outside of the growth zone, carbon dust was embedded into the growing crystal, further reducing the quality of the growing crystal while simultaneously decreasing the transferal efficiency of source material to the growing crystal.
Another problem associated with the use of a Ta container as disclosed in the previously cited article arises during the initial stage of the growth process when the silicon vapors formed by the evaporating SiC source interact with the material of the tantalum container. As a result of this interaction, a low-melting-point tantalum silicon alloy is formed which can lead to the destruction of the container at the normal growth temperature.
In known sublimation techniques for growing SiC single crystals, the vapor source may be either a pre-synthesized SiC powder of the specified dispersity or a polycrystalline or monocrystalline SiC wafer produced, for example, by the Lely method. Although the use of SiC powder is more economical than the use of wafers, providing a continuous supply of powder into the growth zone, as required to grow large single crystals, is quite complicated. Additionally, SiC powder often includes impurities such as graphite or other dust that are transported to the growth surface along with the SiC molecules. These impurities lead to a high density of micropipes and dislocations in the growing crystal, thus substantially impacting the crystal quality.
Accordingly, what is needed in the art is a method and system that allows high quality SiC single crystals to be grown. The present invention provides such a method and system.
SUMMARY OF THE INVENTION
The present invention provides a method and apparatus for growing low dislocation density single crystal silicon carbide. Utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10
4
per square centimeter, preferably less than 10
3
per square centimeter, and more preferably less than 10
2
per square centimeter. The density of micropipes in the as-grown material is less than 10 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter. Depending upon the construction of the crucible, the concentration of tantalum or niobium impurities is less than 10
17
per cubic centimeter.
In accordance with the invention, a SiC sour

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low defect axially grown single crystal silicon carbide does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low defect axially grown single crystal silicon carbide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low defect axially grown single crystal silicon carbide will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3038205

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.