Low cost, resilient, shear resistant polyurethane elastomers...

Games using tangible projectile – Golf – Ball

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S271100, C264S279000, C264S279100, C473S351000, C473S365000, C528S061000, C528S064000, C528S065000, C528S076000

Reexamination Certificate

active

06530849

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a low cost polyurethane elastomer having high resilience and shear resistance useful in the manufacture of golf ball covers.
2. Description of Related Art
Polyurethane elastomers are well known and can be formed by reacting a diisocyanate, e.g., diphenyl methane diisocyanate (MDI), toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), and the like, with an organic polyol, e.g., polytetramethylene ether glycol (PTMEG), polyester or polycaprolactone glycol (PE), homopolymers and copolymers of ethylene oxide and propylene oxide (E/PO), and the like, and a chain extender, e.g., an aliphatic diol, such as, 1,4 butanediol (BD), or an aromatic diamine, such as, diethyltoluene diamine (DETDA). Catalysts, such as, triethylene diamine (TEDA), can be used to increase the reactivity of the components. Additional components, such as, UV stabilizers, antioxidants, dyes, antistatic agents, and the like, can be added, if desired.
U.S. Pat. No. 3,147,324 discloses a method of covering a golf ball with a liquid urethane polymer by suspending the golf ball center within a mold cavity and filling the mold cavity with the liquid polymer.
U.S. Pat. No. 3,979,126 discloses a solid plastic polyurethane golf ball. The golf ball comprises a polyether urethane prepolymer with a curing agent.
U.S. Pat. No. 4,061,662 describes a process which is effective in removing unreacted tolylene diisocyanate (TDI) from a polyisocyanate by bringing said polyisocyanate into contact with molecular sieves.
U.S. Pat. No. 4,123,061 discloses a polyurethane golf ball comprising a core and a cover at least one of which is a polyether urethane prepolymer with a curing agent selected from the group consisting of trifunctional polyols, tetrafunctional polyols and amine-type curing agents having at least two reactive amine groups.
U.S. Pat. No. 4,182,825 discloses capping hydroxy terminated polyethers with toluene diisocyanate, and substantially reducing the amount of unreacted toluene diisocyanate. When cured with 4,4′-methylene-bis-(2-chloroaniline), the cured products are said to have superior dynamic properties to the corresponding toluene diisocyanate capped polyethers with the usual unreacted toluene diisocyanate content. The cured products are said to be useful in fabricating industrial tires.
U.S. Pat. No. 4,288,577 discloses the reaction of a large excess of 1,4-butanediol with methylenebis (4-phenyl isocyanate) to give a mixture of urethanediols which is a suitable curing agent for isocyanate-terminated polyurethane prepolymers, especially prepolymers made from methylenebis (4-phenyl isocyanate) and polyols. It is said to be desirable to have a urethanediol mixture in which at least about 88 weight percent consists of the reaction product of 2 moles of 1,4-butanediol with 1 mole of the diisocyanate, about 10 weight percent of the reaction product of 3 moles of 1,4-butanediol with 2 moles of the diisocyanate, and no more than about 2 weight percent of 1,4-butanediol. The cured polyurethanes are said to have higher hardness and better overall physical properties than methylenebis-(4-phenyl isocyanate)-based polyurethanes cured with conventional commercial diols providing “hard” cured products.
U.S. Pat. No. 4,294,951 discloses rapidly cured polyurethane elastomers that are prepared by mixing a diphenylmethanediisocyanate based liquid prepolymer obtained from polytetramethylene ether glycol and an aliphatic diol at specified proportions, and a curing agent essentially containing said polytetramethylene ether glycol, diol and organometallic catalyst.
U.S. Pat. No 4,385,171 discloses removing unreacted diisocyanate from a polyurethane prepolymer reaction product mixture by co-distillation of the unreacted diisocyanate with a compound which is at least partially miscible with the prepolymer and which boils at a temperature greater than the boiling point of the diisocyanate. A highly efficient removal rate is said to be achieved in that the concentration of unreacted diisocyanate remaining in the reaction product mixture is generally less than about 0.1 percent, and in many cases less than about 0.05 percent, based on the weight of the prepolymer.
U.S. Pat. No. 4,555,562 discloses a polyurethane elastomer product formed by curing a mixture of an NCO terminated urethane prepolymer and a polyhydroxyalkylphosphine oxide.
U.S. Pat. No. 4,631,298 discloses mixtures of aromatic diamines, polyurethanes made therefrom, and processes for the preparation of the polyurethanes. The mixtures of aromatic diamines comprise a first aromatic diamine having a machine gel time of about 1 to 4 seconds in a 50,000 psi modulus RIM formulation reaction and the second aromatic diamine having a slower machine gel time of about 1.5 to 15 times that of the first aromatic diamine. The mixtures provide gel times of about 2.5 to 10 seconds, suitable for filling large molds such as automotive body panels. The aromatic diamine mixtures allow use of larger proportions of diamine to provide polyurethanes that are said to be rigid but not brittle at demold and have unexpectedly superior flexural modulus properties. The polyurethanes formed with the chain extender mixtures are also said to have flexural modulus superior to polyurethanes formed from either of the diamines individually
U.S. Pat. No. 4,888,442 is directed to a process for reducing the free monomer content of polyisocyanate adduct mixtures wherein the adduct has an average isocyanate functionality of greater than about 1.8 which comprises treating the polyisocyanate adduct mixture in the presence of 2 to about 30 percent by weight of an inert solvent, based on the weight of the polyisocyanate mixture, in an agitated thin-layer evaporator under conditions sufficient to reduce the free monomer content of the polyisocyanate adduct mixture below that level which is obtainable in the absence of a solvent.
U.S. Pat. No. 5,334,673 discloses a golf ball made from a composition of a polyurethane prepolymer and a slow-reacting polyamine curing agent and/or a difunctional glycol. The slow-reacting polyamine curing agents and difunctional glycols are 3,5-dimethylthio-2,4-toluenediamine; 3,5-dimethylthio-2,6-toluenediamine; N,N′-dialkyldiamino diphenyl methane; trimethyleneglycol-di-p-aminobenzoate; polytetramethyleneoxide-di-p-aminobenzoate; 1,4-butanediol; 2,3-butanediol; 2,3-dimethyl-2,3-butanediol; ethylene glycol; and mixtures thereof.
U.S. Pat. No. 5,387,750 discloses a method for producing an in-mold coated plastic article having an adherent coating wherein the coating composition is said to have improved surface coverage properties and a fast cure rate. The coating composition contains (a) a first component comprising at least one polyol having at least 4 hydroxyl groups and a viscosity at room temperature of 6000 cps or less; and (b) a second component comprising a solvent-free isocyanate prepolymer. The viscosity of the coating composition is 15000 cps or less at room temperature.
U.S. Pat. No. 5,599,874 discloses a thermoplastic polyurethane elastomeric seal composition comprising, by weight, about 90% to 99% thermoplastic polyurethane elastomer and about 1% to 10% fibers. Also, the thermoplastic polyurethane elastomer is derived from the reactants comprising: (i) a mixture of polyol and an aromatic chain extender in a molar ratio in the range of from about 40:60 to about 60:40 of butanediol glycol adipate to hydroquinone bis 2-hydroxyethyl ether, and (ii) 1,5 naphthalene diisocyanate present in a molar ratio in the range of about 50:50 to about 54.5:45.5 of 1,5 naphthalene diisocyanate to the said first mixture of polyol and an aromatic chain extender. After curing, the thermoplastic polyurethane elastomeric seal compound is said to have outstanding wear resistance and low compression set.
U.S. Pat. No. 5,692,974 relates to methods of using cationic ionomers in golf ball cover compositions and to golf balls which have covers and cores that incorporate urethane ionomers. The polyurethane golf ball cov

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low cost, resilient, shear resistant polyurethane elastomers... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low cost, resilient, shear resistant polyurethane elastomers..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low cost, resilient, shear resistant polyurethane elastomers... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3069206

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.