Low cost high density thin film processing

Semiconductor device manufacturing: process – Chemical etching – Liquid phase etching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06294477

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The invention relates to the fabrication of integrated circuit devices and more particularly, to a method of creating thin interconnect lines using thin film processing technology.
(2) Description of the Prior Art
Development of semiconductor devices has for quite some time be characterized by obtaining device performance improvements by means of device miniaturization. Device miniaturization has brought with it increasing device densities which in turn has resulted in devices that contain multiple levels of metal interconnect networks that are located above the surface of the semiconductor substrate. Modern device design has progressed where device dimensions are now in the sub and deep submicron range down to for instance 0.25 um. With this it is not uncommon to have three or four levels of device interconnect layers within one device construction.
When the dimensions of the Integrated Circuits are scaled down, the cost per die is decreased while some aspects of performance are improved. The metal connections which connect the Integrated Circuit to other circuit or system components become of relative more importance and have, with further miniaturization of the IC, an increasingly negative impact on the circuit performance. The parasitic resistance of the metal interconnections increase, which degrades the chip performance significantly. Of most concern in this respect is the voltage drop along the power and ground buses and the RC delay of the critical signal paths. Attempts to reduce the resistance by using wider metal lines result in higher capacitance of these wires.
Increased device density has not only led to increased use of different material that are used for interconnect lines, the effort has also led to the development of a number of different device packages. As a for instance, increased Input-Output (I/O) combined with increased demands for high performance IC's has led to the development of Flip Chip Packages. Flip-chip technology fabricates bumps (typically Pb/Sn solders) on Al pads on chip and interconnect the bumps directly to the package media, which are usually ceramic or plastic based. The flip-chip is bonded face down to the package medium through the shortest path. These technologies can be applied not only to single-chip packaging, but also to higher or integrated levels of packaging in which the packages are larger and to more sophisticated substrates that accommodate several chips to form larger functional units.
The flip-chip technique, using an area array, has the advantage of achieving the highest density of interconnection to the device and a very low inductance interconnection to the package. However, pre-testability, post-bonding visual inspection, and TCE (Thermal Coefficient of Expansion) matching to avoid solder bump fatigue are still challenges. In mounting several packages together, such as surface mounting a ceramic package to a plastic board, the TCE mismatch can cause a large mechanical stress on the solder-lead joints that can lead to joint breakage caused by solder fatigue from temperature cycling operations.
Prior Art high density substrates such as those used for thin film MCM's (multi-chip modules) are processed on six or eight inch wafers. Dielectric coatings with materials such as polyimides and BCB are used. Vias are created in the dielectric layers by a photolithographic approach for the photosensitive polyimide or BCB. Alternatively, a layer of photoresist is deposited and patterned on the dielectric material and a plasma dry etching step is used to create the vias.
The metal interconnect process is usually performed by sputtering a metal deposition with Cr/Cu or Ti/Cu. A masking pattern is created on the sputtered plating base which is followed by a semi-additive plating step. A wet etch step is used to etch off the plating base and a plasma step is used after the wet etch to remove a thin layer of the dielectric layer on the top surface in order to get rid of the remains of the sputtered film that has penetrated into the dielectric causing leakage current.
The wafer based thin film MCM approach can create high density interconnect substrates but the substrates that are manufactured are very expensive because of the equipment used and because of the small wafer size.
Another Prior Art substrate packaging uses ceramic and plastic Ball Grid Array (BGA) packaging. Ceramic substrate packaging is expensive and has proven to limit the performance of the overall package. Recent years have seen the emergence of plastic substrate BGA packaging; this type of packaging has become the mainstream design and is frequently used in high volume BGA package fabrication. The plastic substrate BGA package performs satisfactorily when used for low-density flip chip Integrated Circuits (IC's). If the number of pins emanating from the IC is high, that is in excess of 350 pins, or if the number of pins coming from the IC is less than 350 but the required overall package size is small (resulting in a solder ball pitch of less than 1.27 mm.), the plastic BGA structure becomes complicated and expensive. This can be traced to the multi-layer structure used to create the plastic BGA package. This multi-layer structure for the plastic BGA interconnect package is referred to as the Build Up Multilayer or BUM approach and results in a line density within the package of typically 2-3 mil or 50 u-75 u range. This line density is not sufficiently high for realizing the fan out from the chip I/O to the solder balls on the package within a single layer. This leads to the multi-layer approach. The multi-layer approach brings with it the use of relatively thick (50 u-75 u) dielectric layers, these layers have a TCE (Thermal Coefficient of Expansion) that is considerably higher than the TCE of the laminate board on which the plastic BGA package is mounted. To counteract this difference in TCE's the BUM layers must be (thermally and mechanically) balanced on the other side (the side of the board that does not usually require an interconnect density provided by the BUM layers) of the laminate board. This latter requirement results in the use of additional material and processing steps to apply these materials, increasing the cost of the BGA package and creating a yield detractor.
Another approach is the use of a flexible film as the starting material. A polymer film, such as the polyimide film or an epoxy based film of 2 to 3 mil thick with or without a copper layer attached to it, is processed by metalization and patterning on one or both sides. A completed two metal layer film, described as a layer pair, can be used as a packaging substrate material. Subsequent dielectric and copper layers can be build up on the processed first metal layer, such as the RCC (Resin Coated Copper) approach. Alternatively, two or more layer pairs can be bonded together to make a multilayer structure. The advantage of this approach is that it uses a minimum amount of material. However, because of the lack of stability of the film, the line and space density is limited to that of the BUM structure described herein, which is not sufficiently high for the high density packaging that is used to achieve a low cost substrate, having only a few interconnect layers.
Other Prior Art applications use thin film interconnect layers for flip chip or wire bond packaging substrates. These applications start with a laminate substrate onto which the thin film layers are deposited. For these applications, the laminate substrate is used as a base carrier substrate and provides the mechanical support. Plated Through Holes (PTH) are mechanically drilled through the laminate substrate and are used to establish connections to the backside of the substrate for solder ball attach and electrical contacts. By using thin films, high wire density and very thin dielectric layers can be realized. This approach also does not, unlike the BUM approach, require to counter-balance thick layers of dielectric in order to establish dimensional stabi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low cost high density thin film processing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low cost high density thin film processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low cost high density thin film processing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2471352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.