Low cost broad range loudspeaker and system

Electrical audio signal processing systems and devices – Electro-acoustic audio transducer – Electromagnetic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S409000, C381S410000, C381S412000, C381S415000, C381S419000

Reexamination Certificate

active

06654476

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to loudspeakers and to low-cost magnetic motors for use in loudspeakers. The invention has application, among other places, in portable consumer electronics, in cell phones, pagers, digital music players, and other apparatus where weight and size are factors. It has particular utility in applications that rely upon a main power source having a relatively low voltage, e.g., between about three to approximately twelve volts, and in further aspects provides compact full range systems.
A large percentage of loudspeakers are electrodynamic speakers. Such speakers employ a magnetic driver to produce movement of a diaphragm (typically cone or dome-shaped sheet) which, in turn, causes sound. A typical loudspeaker includes a permanent magnet arranged to define a gap, and a voice coil positioned in the gap to which an audio-frequency signal is applied. The magnet may be mounted toward the rear of the frame, behind the diaphragm, and may utilize a magnetic circuit formed by one or more pole pieces arranged to define a high-flux gap, with the magnetic field focused or intensified in the gap. The voice coil is disposed adjacent the magnet, typically within the air gap, and may consist of conductive leads or wire formed about a cylindrical support or bobbin that is attached to the diaphragm.
In operation, electrical audio signals from an amplifier are applied to the voice coil producing a varying electromagnetic field around the coil which interacts with the magnetic field produced by the permanent magnet. The magnet is securely fixed to the frame and the voice coil is movable, so the voice coil moves as the two fields interact. Because the voice coil is coupled to the diaphragm via the support, its movement causes the diaphragm to vibrate. The vibration of the diaphragm causes air around the speaker to pressurize and depressurize producing sound waves in the air.
The high energy density of rare earth materials such as neodymium boron iron is attractive for creating and miniaturizing shielded loudspeaker magnets. The magnet rings or discs may be installed as cores on the inside of the voice coil for easy manufacturing, and the high fluxes allow high maximum levels of storable and extractable energy, so that such speakers may be efficiently driven.
However, the physics of sound generation, as well as the resistance or inductance of the coil tend to limit the frequency response and quality of sound achievable as the speaker size gets smaller. To some extent, one can compensate for non-linearities of response by compensating the gain of the drivers as a function of frequency. However, when one adds the constraint of using a low operating voltage, then the sharp drop in driving efficiency at the low end of the spectrum, and the increase in voice coil impedance at the high end, would seem to impose severe limitations on effectiveness of the technique of correction by drive power compensation.
Thus it would be desirable to provide improved small loudspeakers, with more uniform and/or extended response.
An object of this invention is to provide an improved loudspeaker and improved magnetic motor for a loudspeaker.
A further object of the invention is to provide a motor of low impedance and high engine efficiency for driving a loudspeaker.
A still further object is to provide motor that eliminates the need for multiple magnets and expensive edge winding and offers greater freedom in amplifier matching for best overall system value.
Still yet further objects of the invention are to provide such motors as permit the construction of low voltage sound systems for portable sound or voice appliances like cell phones, note book and palm size computers, pagers, and other interactive, wireless or computer audio appliances.
SUMMARY OF THE INVENTION
One or more of the foregoing objects are attained in one aspect of the invention by a loudspeaker having a diaphragm with a voice coil disposed about its perimeter and extending in a gap into which the flux of a rare earth magnet is focused. The voice coil may have two or more windings that are connected in parallel. These may be layered on top of one another, so that the impedance of the coil, as well as its depth in the direction of motion, are low. The voice coil is preferably implemented using a polyimide form or bobbin, made for example, of circuit board material, which has patterned lead-in conductors embedded therein to bring power to the perimeter of the coil. The lead-in conductors connect at one end to wire windings wound on the bobbin, and extend at their other end to, or through, an opening located centrally behind the diaphragm, providing a robust ribbon input connection. The ribbon lead-in may be symmetrical, and the central opening further provides an air channel which may, for example, couple to an auxiliary chamber to further enhance the acoustic output. The magnet may be an annular or ring magnet, and it rests on a first, or lower, generally cup-shaped pole piece, that cooperates with a second, or upper generally washer-shaped pole piece to define the flux gap in a region extending around the perimeter of the diaphragm. Preferably, the upper surface of the washer is inclined radially inward to an edge of diminished thickness, to reduce central mass. This also provides added clearance at the front of the magnet assembly for accommodating the lead-in ribbon in a widely-curved arc without contact, and reduces the length of the central passage to prevent undesirable whistling when the diaphragm is subject to large displacement. The diaphragm may be domed to provide further clearance, and is weighted or mass-loaded by applying a material such as butyl rubber to lower its natural resonant frequency, thus extending its useful response band while providing sharp rolloff at the low end. Loading may be achieved by a sandwich construction, in which one face of the dome is entirely coated, and the rubber layer further extends in a band around the edge of the diaphragm to suspend the diaphragm to its housing. A flat diaphragm may also be used. Pole pieces may be formed of soft iron or low carbon steel, but materials such as chrome vanadium may be used to further reduce the thickness and weight of the overall construction without sacrificing the gains in efficiency and engine strength. The diaphragm may have a circular shape, or a rounded elongated contour, and the voice coil is a cylinder having, in cross-section, a corresponding contour. A magnetic fluid is selectively placed in the gap to enhance heat transfer and coil centering.
Further aspects of the invention provide motors as described above in which the coils are formed from wires that have round cross-sections.
Still further aspects of the invention provide motors as described above in which a first coil is disposed about a voice coil former and in which a second coil is disposed about the first coil.
The invention provides, in other aspects, a motor as described above which includes, as a magnetic field source, a permanent magnet and, more particularly, a permanent magnet that includes a rare earth metal. Related aspects of the invention provide a motor as described above in which the magnetic field source comprises neodymium. One such source is a neodymium boron iron magnet.
Another aspect of the invention provides a motor as described above in which the permanent magnet is ring shaped and provides air communication between the rear surface of the diaphragm and an auxiliary space.
Still other aspects of the invention provide a loudspeaker that includes a magnetic motor as described above.
These and other aspects of the invention are evident in the drawings and in the description that follows.
Loudspeaker magnetic motors as provided by the invention feature several advantages over the prior art. They provide a low cost, practical method for maximizing the available engine strength B L
2
/r in a small speaker with a rare earth magnet motor. This leads to an improved cost performance ratio by permitting construction of lower impedance, higher driving f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low cost broad range loudspeaker and system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low cost broad range loudspeaker and system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low cost broad range loudspeaker and system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3140618

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.