Loose-fill insulation dispensing apparatus including mesh...

Pipes and tubular conduits – With flow regulators and/or baffles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C138S039000, C239S590300

Reexamination Certificate

active

06401757

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to apparatus for dispensing blown, loose-fill insulation materials and in particular to apparatus for decreasing the density of such insulation as it is discharged from the apparatus.
BACKGROUND OF THE INVENTION
Because of cost-effectiveness, speed and ease of application, as well as thoroughness of coverage in both open and confined areas, the practice of using pneumatically delivered or “blown” loose-fill insulation materials, e.g., glass fiber, rock wool, mineral fiber wool, cellulose fibers, expanded mica, and the like, has become an increasingly popular method by which to install insulation in new and existing building constructions. The essential components of a typical blown loose-fill delivery system include a source of insulation material such as a hopper or the like, conduit means for conveying the material from the insulation source to the installation site, and a source of pressurized air such as a compressor, blower or the like, for generating a flow of pressurized air for entraining the fibrous and/or particulate loose-fill insulation material and delivering it from its source and through the conduit means for discharge at the installation site.
Loose-fill insulation blown into ceilings and outside wall cavities is very effective in reducing heat transfer in existing buildings. Exterior wall cavities of finished rooms may be filled with blown insulation through holes bored in exterior siding, or the like, without removing or cutting the interior wall surfacing materials. In addition, loose-fill blown insulation can be used in new construction, where insulative batts are often used.
Loose-fill insulation can provide a substantial advantage over batt-type insulation in that the loose-fill material readily assumes the actual shape of the interior cavity being filled, whereas the insulative batts are manufactured in a limited number of standard size widths, none of which will as closely match the actual dimensions of wall cavities or accommodate obstructions encountered in the field. Properly installed, loose-fill insulation essentially completely fills the wall cavity, conforming to the actual shape of the wall cavity, including obstructions, and provides, in that respect, effective resistance to heat transfer through the wall. Loose-fill insulation also lends itself to installation in ceilings, party walls and any other place where it is desired to resist heat transfer, as an alternative to batts, especially where there are obstructions such as, water, waste and gas lines, electrical conduits, heating and air conditioning ducts, etc.
In order to promote efficient use of energy required to heat and/or cool new buildings, many building codes require that new buildings be constructed to provide a certain minimum resistance to heat flow. To achieve this threshold, insulation is typically installed between one or more of a building's interior and exterior walls and possibly in superstructure and foundation areas such as crawl spaces, attics and basements. “R-value” refers to an insulation's thermal resistance or resistance to heat flow. The higher an insulation's R-value, the greater its thermal insulative capability. Existing building constructions can increase the R-value of their insulation by supplementing existing insulation with additional insulation.
The most influential factors for achieving a desired R-value when installing blown or pneumatically-delivered fibrous installation are the thickness and density of the material to be installed. In “open” areas such as attics, for example, insulation thickness or density is not normally of great concern. However, in confined areas such as the voids between interior and building walls the available insulation space may be quite limited. This physical constraint restricts installation of blown insulation beyond a certain thickness and thus may materially impact the available R-value for insulation present in such areas, especially if the insulation is installed at less than optimum consistency and density.
The insulation material used in conventional insulation blowing machines is typically in a relatively loose condition though usually packed under high compression in bags or sacks for shipment to the user. Upon being opened, these bags or sacks are typically manually emptied into a receiving hopper of a conventional insulation spraying or blowing machine. Once in the receiving hopper, the insulation material includes many relatively large compressed masses or clumps that may be difficult to feed through an air hose to a dispensing nozzle. And, even if the clumps are successfully dispensed they may produce an installed layer or volume of insulation material of inconsistent density and R-value. That is, the clumps themselves may have comparatively high R-values whereas the many void spaces between the clumps may have negligible R-values. Those of ordinary skill in the art of blown loose-fill insulation are aware that thermal performance of the installed material is optimized when its fibers and particles are dispensed and installed as uniformly distributed, finely separated fibers and particles rather than as clumps.
An advantage exists, therefore, for a blown loose-fill insulation dispensing apparatus that conditions the insulation material as it is discharged from the device such that the material is discharged in a substantially uniform density stream of separated fibers and/or particles.
SUMMARY OF THE INVENTION
The present invention provides apparatus for dispensing blown loose-fill insulation. The apparatus includes a flexible delivery conduit that conveys loose-fill insulation material from a source of such material and, possibly, an optional rigid tubular wand connected to the distal end of the conduit. According to a preferred embodiment, the apparatus further comprises a substantially cylindrical member that may be removably or permanently disposed within either or both of the flexible delivery conduit and rigid tubular wand connected thereto. The cylindrical member includes an insert projecting radially inwardly into the loose-fill insulation flow path of the delivery conduit or wand for mechanically separating the insulation material's fibers and particles prior to discharge from the delivery conduit or wand. In so doing, the insert conditions or “opens” the insulation material in such a way that the material is discharged in a substantially uniform density stream of substantially uniformly distributed fibers and particles.
Other details, objects and advantages of the present invention will become apparent as the following description of the presently preferred embodiments and presently preferred methods of practicing the invention proceeds.


REFERENCES:
patent: 3347469 (1967-10-01), Ross et al.
patent: 4487227 (1984-12-01), Meissner
patent: 4865255 (1989-09-01), Luvisotto
patent: 4976289 (1990-12-01), Umemori et al.
patent: 5829649 (1998-11-01), Horton
patent: 6206050 (2001-03-01), Kelley et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Loose-fill insulation dispensing apparatus including mesh... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Loose-fill insulation dispensing apparatus including mesh..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Loose-fill insulation dispensing apparatus including mesh... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2933624

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.