Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Of data transmission
Reexamination Certificate
1997-09-15
2002-04-02
Kuntz, Curtis (Department: 2643)
Telephonic communications
Diagnostic testing, malfunction indication, or electrical...
Of data transmission
C379S027010, C379S027030, C379S001010, C379S029010
Reexamination Certificate
active
06366644
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention relates in general to data communication, and more particularly to a loop integrity test device and method for digital subscriber line (xDSL) communication.
BACKGROUND OF THE INVENTION
Digital subscriber line (xDSL) communication can provide a high bandwidth data path supported by the twisted pair wiring infrastructure of the public switched telephone network (PSTN). xDSL technologies support data service simultaneously with traditional telephone service using a separation technique. Suitable xDSL technologies include asymmetric digital subscriber line (ADSL), rate adaptable digital subscriber line (RADSL), symmetric digital subscriber line (SDSL), high-speed digital subscriber line (HDSL) and very high-speed digital subscriber line (VDSL).
In general, an xDSL communication link is established across the local loop between customer premises equipment (CPE) and the local loop termination point (e.g., central office or remote terminal). The local loop termination point typically has a xDSL access multiplexer (DSLAM) that handles the xDSL link on the network side, and the CPE typically includes one or more xDSL termination units (XTU) that handle the xDSL link on the customer premises side. One architecture for xDSL communication is disclosed in U.S. Pat. No. 5,668,857 Sep. 16, 1997, and entitled “Communication Server Apparatus and Method.”
In order to support xDSL communication, the twisted pair line on the local loop between the customer premises and the loop termination point must meet certain physical characteristics. If it does not, an xDSL communication link can not be successfully established. Consequently, it can be desirable to allow the xDSL capability of the local loop to be quickly verified at the same time that xDSL service is installed at the customer premises. Further, it can be desirable to monitor the xDSL capability of the local loop on an ongoing and continuous basis.
SUMMARY OF THE INVENTION
In accordance with the present invention, a loop integrity test device and method for digital subscriber line communication are disclosed that provide advantages over conventional xDSL communication devices and systems.
According to one aspect of the present invention, a digital subscriber line (xDSL) communication system allows xDSL communication across a local loop. The system includes a local loop termination point and customer premises equipment connected to a twisted pair telephone line. Loop integrity test devices for xDSL communication are located at the local loop termination point and the customer premises equipment and are coupled to the telephone line. The loop integrity test devices are respectively operable to transmit test signatures across the telephone line, to receive and evaluate test signatures from the telephone line, and to indicate whether the telephone line can support xDSL communication based upon evaluation of test signatures.
According to another aspect of the present invention, a loop integrity test device is disclosed that includes a line interface unit operable to connect to and interface with a twisted pair telephone line. The test device also includes an output device operable to indicate a pass state and a fail state. Further, the test device includes a control unit having a generation unit and an evaluation unit. The generation unit is operable to transmit a test signature across the telephone line. The evaluation unit is operable to receive and evaluate a test signature to determine whether the telephone line can support xDSL communication. The control unit is then operable to direct the output device to indicate a pass state if the telephone line can support DSL communication and to indicate a fail state if the telephone line can not support xDSL communication.
A technical advantage of the present invention is that the integrity of the local loop can be verified at the time of installation of high speed xDSL data service at a customer premises. In particular, the present loop integrity test device provides an immediate indication of whether the loop can support xDSL communication when it is installed.
Another technical advantage of the present invention is an improvement in the reliability and monitoring of the xDSL communication system. The test devices implement a continuous integrity check of the local loop that allows the telephone company or other service provider to be alerted to a problem on the local loop. This notification may allow the service provider to correct the problem before a degradation of service is noticed by the customer.
Other technical advantages should be readily apparent to one skilled in the art from the following figures, description, and claims.
REFERENCES:
patent: 3532827 (1970-10-01), Ewin
patent: 3821484 (1974-06-01), Sternung et al.
patent: 4002849 (1977-01-01), Kotler et al.
patent: 4282408 (1981-08-01), Sauers
patent: 4438511 (1984-03-01), Baran
patent: 4665514 (1987-05-01), Ching et al.
patent: 4679227 (1987-07-01), Hughes-Hartogs
patent: 4731816 (1988-03-01), Hughes-Hartogs
patent: 4757495 (1988-07-01), Decker et al.
patent: 4782512 (1988-11-01), Hutton
patent: 4833706 (1989-05-01), Hughes-Hartogs
patent: 4841561 (1989-06-01), Hill
patent: 4949355 (1990-08-01), Dyke et al.
patent: 4980897 (1990-12-01), Decker et al.
patent: 4985889 (1991-01-01), Frankish et al.
patent: 5025469 (1991-06-01), Bingham
patent: 5054034 (1991-10-01), Hughes-Hartogs
patent: 5066139 (1991-11-01), Soderberg et al.
patent: 5111497 (1992-05-01), Bliven et al.
patent: 5119402 (1992-06-01), Ginzburg et al.
patent: 5119403 (1992-06-01), Krishnan
patent: 5128619 (1992-07-01), Bjork et al.
patent: 5134611 (1992-07-01), Steinka et al.
patent: 5185763 (1993-02-01), Krishnan
patent: 5198818 (1993-03-01), Samueli et al.
patent: 5199071 (1993-03-01), Abe et al.
patent: 5202884 (1993-04-01), Close et al.
patent: 5206886 (1993-04-01), Bingham
patent: 5210530 (1993-05-01), Kammerer et al.
patent: 5214650 (1993-05-01), Renner et al.
patent: 5222077 (1993-06-01), Krishnan
patent: 5228062 (1993-07-01), Bingham
patent: 5247347 (1993-09-01), Litteral et al.
patent: 5282155 (1994-01-01), Jones
patent: 5285474 (1994-02-01), Chow et al.
patent: 5293402 (1994-03-01), Crespo et al.
patent: 5295159 (1994-03-01), Kerpez
patent: 5331670 (1994-07-01), Sorbara et al.
patent: 5337348 (1994-08-01), Yamazaki et al.
patent: 5339355 (1994-08-01), Mori et al.
patent: 5341474 (1994-08-01), Gelman et al.
patent: 5345437 (1994-09-01), Ogawa
patent: 5367540 (1994-11-01), Kakuishi et al.
patent: 5371532 (1994-12-01), Gelman et al.
patent: 5379441 (1995-01-01), Watanabe et al.
patent: 5390239 (1995-02-01), Morris et al.
patent: 5400322 (1995-03-01), Hunt et al.
patent: 5404388 (1995-04-01), Eu
patent: 5408260 (1995-04-01), Arnon
patent: 5408522 (1995-04-01), Ikehata et al.
patent: 5408527 (1995-04-01), Tsutsu
patent: 5408614 (1995-04-01), Thornton et al.
patent: 5410264 (1995-04-01), Lechleider
patent: 5410343 (1995-04-01), Coddington et al.
patent: 5412660 (1995-05-01), Chen et al.
patent: 5414455 (1995-05-01), Hooper et al.
patent: 5414733 (1995-05-01), Turner
patent: 5422876 (1995-06-01), Turudic
patent: 5428608 (1995-06-01), Freeman et al.
patent: 5430793 (1995-07-01), Ueltzen et al.
patent: 5434863 (1995-07-01), Onishi et al.
patent: 5440335 (1995-08-01), Beveridge
patent: 5442390 (1995-08-01), Hooper et al.
patent: 5444703 (1995-08-01), Gagliardi et al.
patent: 5452306 (1995-09-01), Turudic et al.
patent: 5453779 (1995-09-01), Dan et al.
patent: 5461415 (1995-10-01), Wolf et al.
patent: 5461616 (1995-10-01), Suzuki
patent: 5461624 (1995-10-01), Mazzola
patent: 5461640 (1995-10-01), Gatherer
patent: 5469495 (1995-11-01), Beveridge
patent: 5473599 (1995-12-01), Li et al.
patent: 5475735 (1995-12-01), Williams et al.
patent: 5477263 (1995-12-01), O'Callaghan et al.
patent: 5479447 (1995-12-01), Chow et al.
patent: 5495483 (1996-02-01), Grube et al.
patent: 5504736 (1996-04-01), Cubbison, Jr.
patent: 5504753 (1996-04-01), Renger et al.
patent: 5506868 (1996-04-01), Cox et al.
patent: 5513251 (1996-04-01), Rochki
McHale John F.
Sisk James R.
Baker & Botts L.L.P.
Barnie Rexford N
Cisco Technology Inc.
Kuntz Curtis
LandOfFree
Loop integrity test device and method for digital subscriber... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Loop integrity test device and method for digital subscriber..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Loop integrity test device and method for digital subscriber... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2840913