Lockable motor drive

Boring or penetrating the earth – With signaling – indicating – testing or measuring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06712159

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to bottom hole assemblies for drilling oilfield wellbores and more particularly to the use of gyroscopic and other sensors to determine wellbore direction during the drilling of the wellbores and to the correction of data from such sensors.
BACKGROUND OF THE INVENTION
To obtain hydrocarbons such as oil and gas, wellbores (also referred to as the boreholes) are drilled by rotating a drill bit attached at the end of a drilling assembly generally referred to as the “bottom hole assembly” or the “drilling assembly.” A large portion of the current drilling activity involves drilling highly deviated and substantially horizontal wellbores to increase the hydrocarbon production and/or to withdraw additional hydrocarbons from the earth's formations. The wellbore path of such wells is carefully planned prior to drilling such wellbores utilizing seismic maps of the earth's subsurface and well data from previously drilled wellbores in the associated oil fields. Due to the very high cost of drilling such wellbores and the need to precisely place such wellbores in the reservoirs, it is essential to continually determine the position and direction of the drilling assembly and thus the drill bit during drilling of the wellbores. Such information is utilized, among other things, to monitor and adjust the drilling direction of the wellbores.
In the commonly used drilling assemblies, the directional package commonly includes a set of accelerometers and a set of magnetometers, which respectively measure the earth's gravity and magnetic field. The drilling assembly is held stationary during the taking of the measurements from the accelerometers and the magnetometers. The toolface and the inclination angle are determined from the accelerometer measurements. The azimuth is then determined from the magnetometer measurements in conjunction with the tool face and inclination angle.
The earth's magnetic field varies from day to day, which causes corresponding changes in the magnetic azimuth. The varying magnetic azimuth compromises the accuracy of the position measurements when magnetometers are used. Additionally, it is not feasible to measure the earth's magnetic field in the presence of ferrous materials, such as casing and drill pipe. Gyroscopes measure the rate of the earth's rotation, which does not change with time nor are the gyroscopes adversely affected by the presence of ferrous materials. Thus, in the presence of ferrous materials the gyroscopic measurements can provide more accurate azimuth measurements than the magnetometer measurements.
U.S. Pat. No. 5,432,699 discloses a method and apparatus measuring motion signals of gyroscopes in downhole instruments used to determine the heading of a borehole. Accelerometer and magnetometer data along three orthogonal axes of a measurement sub are used to obtain unit gravitational and magnetic vectors. The gyroscope measurements are used to correct the magnetic and gravity measurements made by the magnetometer and the accelerometer respectively. The calculations performed in the correction process by this, and other prior art optimization schemes based upon least squares methods, are valid when the measurements are corrupted by random additive noise. As would be known to those versed in the art, in the presence of systematic measurement errors, such least-squares optimization methods are unreliable.
Commercially available gyroscopes contain systematic errors or biases that can severely deteriorate accuracy of a gyroscope's measurements and thus the azimuth. Gyroscopes have been utilized in wireline survey applications but have not found commercial acceptance in the measurement-while-drilling tools such as bottomhole assemblies.
In wireline applications, the survey tool is conveyed into the wellbore after the wellbore has been drilled, in contrast to the MWD tools wherein the measurements are made during the drilling of the wellbores. Wireline methods are not practical in determining the drilling assembly position and direction during the drilling of the wellbores. In wireline applications, the gyroscopes are used either in a continuous mode or at discrete survey intervals. Wireline survey methods often make it unnecessary to employ techniques to compensate for the present-value of the gyroscope biases. In wireline applications, the gyroscope can be powered-up at the surface and allowed to stabilize (thermally and dynamically) for a relatively long time period. Typically a warm-up period of ten (10) minutes or more is taken. The power to the gyroscope is continuously applied from the beginning at the surface, through the actual wellbore survey and through the final check of the survey tool at the surface at the end of the survey. Therefore, reference alignments can be made at the surface prior to commencing the wellbore survey to adjust or verify the alignment accuracy of the north-seeking gyroscope. The initial independent reference can then be used at the end of the wireline survey. Any bias in the gyroscope in a wireline tool can be measured at the surface by taking the difference in the alignments at the beginning and the end of the survey runs. Furthermore, the wireline tool carrying the gyroscope can easily be rotated at the surface to several different toolface (roll angle) positions to determine the bias present on either of the transverse gyroscopes (i.e., along the x and y axis of the tool) when the tool is at the surface. This bias can be used to verify the accuracy or to correct the gyroscope measurements.
In the MWD environment, the above-noted advantages of the wireline systems are not present. The MWD surveys are usually taken during drill pipe connection times during the drilling of the wellbore, which intervals are relatively short—generally one or two minutes. Power in the MWD tools is generated downhole and/or provided by batteries. To conserve the power, it is desirable to switch off the gyroscopes when not in use because the gyroscopes consume considerable power. For MWD tools utilizing turbine-alternator, the power is generated by flow of the drilling fluid (“mud”) which is interrupted at each pipe connection. Even if the power could be applied continuously, the difference in the bias measured at the surface prior to the drilling and post drilling is not considered an accurate measure due to the very long time between drilling assembly trips, which are typically between 30 and 300 hours.
Bias stability from turn-on to turn-on is a major error component for the currently available tactical grade gyroscopes. Removing the bias by rotating the gyroscopes about a vertical axis (long axis) has been utilized in non-drilling applications. Toolface orientation positioning of a bottomhole assembly during the drilling of the wellbores often is not a control variable that can be changed as desired. The depth, hole angle, tool deviation, and borehole condition often limit the ability to acquire sensor data at various roll angles of the bottomhole assembly in the wellbore. Thus, it is important to ensure that gyroscopes used for MWD measurements are bias compensated in real time internally prior to taking measurements at each interval. This can be achieved by determining and removing the biases in the gyroscope in the transverse plane using an internal indexing mechanism in the process of taking measurements downhole at each drilling interval. Biases may also be present in the other measurements, i.e., those made by magnetometers and accelerometers, for the same reasons as discussed above with reference to gyroscopes. It is desirable to remove these biases as well in order to obtain accurate survey information.
U.S. patent application Ser. No. 09/204,908 to Estes et al, now U.S. Pat. No. 6,347,282 B2, having the same assignee as the present application and the contents of which are fully incorporated herein by reference, discloses a method for estimation and removal of bias in a downhole MWD device. The downhole assembly disclosed therein includes at le

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lockable motor drive does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lockable motor drive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lockable motor drive will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3275565

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.