Location sensor having a satellite receiver for position...

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06249246

ABSTRACT:

FIELD OF THE INVENTION
The present invention is based on a location sensor having a satellite receiver for position determination.
BACKGROUND INFORMATION
It is known to use a location and navigation system for determining location, in particular of a motor vehicle. Sensors for determining direction of travel and distance traveled are often connected to the navigation system. To determine an absolute position of the motor vehicle, it is also possible to use a satellite receiver as known, for example, by way of the Global Positioning System (GPS).
Installation of the direction and displacement sensors on the motor vehicle is, however, relatively complex. On the other hand, position determination using the GPS receiver is relatively imprecise, so that in a densely packed network of streets an accurate location cannot always be determined. In addition, in built-up urban areas it is not possible to receive enough GPS satellites, so that location determination based on satellite reception is not always satisfactory. Moreover, both the signals of both the satellite receiver and the direction and displacement sensors must be processed using corresponding filters, so that location determination is not only unreliable but also complex.
SUMMARY OF THE INVENTION
The location sensor according to the present invention has, in contrast thereto, the advantage that because the sensors are arranged in the same housing, the location sensor can be of very compact configuration. This advantageously decreases not only assembly effort, but also manufacturing costs. It is particularly advantageous that because of the compact design, individual components for signal analysis, for example filters, can be used in multiple fashion, so that the production outlay for the location sensor is further reduced. As a result of the compatible data format at the output of the location sensor, it is also possible to replace conventional satellite receivers.
The features set forth in the dependent claims make possible advantageous developments of and improvements to the location sensor. It is particularly advantageous that a GPS and/or GLONASS system is used as the satellite receiver, since these systems are already installed and to some extent are authorized for civilian use.
The use of one or more acceleration sensors and/or a rotation rate sensor (gyro sensor) as displacement or direction sensors appears favorable because these sensors can be installed, independently of signal transducers of the motor vehicle, in the housing of the location sensor. Additional external vehicle installations and connectors can thereby be eliminated.
The additional use of a barometric altimeter or a temperature sensor means that the accuracy of the position determination can be monitored and improved. Since an altitude determination is also possible when enough GPS satellites are being received, comparison with the readings of the barometric altimeter makes it possible to calibrate the position determination. Since the working accuracy of the components used also depends on ambient temperature, these errors can advantageously be compensated for with the aid of the temperature sensor.
To allow a position determination or in order to calibrate the sensors, for example of the acceleration sensor, even when reception conditions for the sensor signals are very unfavorable, it is advantageous to provide for the connection of a speed transducer. The speed transducer can be a signal transducer, present on the vehicle, for a distance traveled, the signals of which are additionally usable for calibration of the acceleration sensor.
Connecting the individual sensors together to a common position filter allows the elimination of further subassemblies which would otherwise be necessary for each individual sensor. It is particularly favorable in this context that the sensor signals are weighted with a priority factor so that, for example, the position determination with the GPS receiver possesses the highest priority as long as enough satellite signals are receivable. If, on the other hand, satellite signals are no longer receivable, for example in a tunnel, the displacement sensor and the direction sensor receive the highest priority. These priorities are then maintained until the satellite signals are once again receivable with sufficient quality.
It is particularly advantageous that a Kalman filter is provided as the position filter. In this filter the errors of the individual sensors compensate for one another, thus improving the location result.


REFERENCES:
patent: 4731613 (1988-03-01), Endo et al.
patent: 4903212 (1990-02-01), Yokouchi et al.
patent: 5075693 (1991-12-01), McMillan et al.
patent: 5210540 (1993-05-01), Matsumoto
patent: 5517199 (1996-05-01), DiMattei
patent: 6061021 (2000-05-01), Zibell
patent: 42 19 929 (1992-12-01), None
patent: 43 06 640 (1994-08-01), None
patent: 195 13 244 (1996-10-01), None
patent: 2 709 545 (1995-03-01), None
Thomas Kerr, “Decentralized Filtering and Redundancy Management for Multisensor Navigation,” IEEE Transactions On Aerospace And Electronic Systems, vol. AES-23, No. 1, Jan. 1987, pp. 83-119.
Sturza, M. et al., “Embedded GPS Solves The Installation Dilemma,” Navigation Into The 21st Century, Kissimmee, Nov. 29-Dec. 2, 1988, No. 1988, Nov. 29, 1988, Institute of Electrical and Electronics Engineers, pp. 374-380.
“Aided Inertial Land Navigation System (Ilana) With A Minimum Set Of Inertial Sensors,” Position Location And Navigation Symposium (Plans), Las Vegas, Apr. 11-15, 1994, No. -, Apr. 11, 1994, Institute of Electrical And Electronics Engineers, pp. 284-291.
Peters M A G: “Development Of A TRN/INS/GPS Integrated Navigation System” Proceedings Of The Digital Avionics Systems Conference, Los Angeles, Oct. 14-17, 1991, No. CONF. 10, Oct. 14, 1991, Institute Of Electrical And Electronics Engineers, pp. 6-11.
INS/GPS navigation systems for land applications, Tranfield, R., Position Location and Navigation Symposium, Apr. 1996, IEEE, pp. 391-398.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Location sensor having a satellite receiver for position... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Location sensor having a satellite receiver for position..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Location sensor having a satellite receiver for position... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2526287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.