Location encoder

Coded data generation or conversion – Digital pattern reading type converter – For x or y coordinate determination

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S212000

Reexamination Certificate

active

06552670

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This patent application is co-pending with a related patent application entitled “Geographical Comparison Apparatus and Method”, having the same inventors as this patent application, and filed concurrently herewith, the contents of which are incorporated herein by reference.
BACKGROUND
(1) Field
The methods and systems relate generally to encoding data, and more particularly to encoding geographic data.
(2) Description of the Prior Art
In 1999, it is estimated that there were approximately 171 million internet users. It is estimated that four years later, the number of internet users will more than double, expanding electronic traffic throughout the world with increasing concentration. Electronic traffic travels as data packets “hop” from an originating device, through intermediate hubs, to a destination device. Often, the intermediate hubs are preprogrammed according to traffic assumptions and network architecture constraints, thereby causing a majority of data packets to travel unnecessarily long paths between the originating and destination devices. This inefficient hopping scheme places a tremendous burden on telecommunications system infrastructures such as the internet, often resulting in data packets that are misdirected completely, or “lost”. As the number of internet users expands, this problem will increase dramatically.
To manage the internet traffic burden and decrease network latency and packet loss, internet infrastructure providers designed “efficiency” algorithms to compensate for inherently non-directional computer networks. Many of these algorithms are extraordinarily expensive and time consuming. For example, one well-known algorithm includes data headers appended to individual data packets to facilitate the counting and recording of the number of intermediate hops that a packet takes on its journey, and incorporating routers and switches in the network architecture to aim packets along routes that minimize the number of hops. In practice, such methods may actually contribute to network latency as each routing expands the transmission time by examining the packet and altering the packet header.
The significance of the network latency problem can be evidenced by certain internet infrastructure providers that post current latency and packet loss statistics for their networks. Specifying direction to electronic data in computer networks may dramatically improve the speed and efficiency of internet communications while decreasing the burden on infrastructure providers. Such data direction can be provided by better analyzing the originating and destination devices to determine a more optimal path.
It is believed that the internet expansion has also sparked a general interest in all things electronic, and it is therefore not unreasonable to predict that this interest will continue to grow as the internet expands. This assumption, coupled with the prediction that wristwatches, phones, computers, automobiles, and nearly every mobile electronic device, will be location-aware and communications enabled, indicates an independent, emerging urgency for efficient electronic trafficking. Present examples of such mobile electronic devices include internet enabled cellular phones and personal digital assistants (PDAs) that incorporate Global Positioning System (GPS) receivers.
Further proof of the ever-increasing electronic traffic demands and requirements includes Federal Communications Commission (FCC) regulation E911 that requires location awareness for cellular phones sold in the United States after Oct. 1, 2001.
As mobile devices are enhanced, it is anticipated that mobile devices will proliferate, and more people will use the devices to connect to computer networks such as the internet to locate other people, places, items, businesses, services, etc. in designated areas of interest. It is expected that the availability of such information from mobile devices can drastically increase personal efficiency.
To realize the anticipated increase in personal efficiency, it is necessary that electronic devices utilize efficient searching algorithms that readily identify and parse location-based information; however, since mobile computing devices are by definition portable, such devices are historically small in size and therefore lack the processor speed and storage space of desktop personal computers. Additionally, connections between the mobile devices and the internet utilize “thin pipes” including wireless modems that can typically be slower and more prone to signal-loss interruption than counterpart land-line modems. Since mobile device users are often generally mobile people who desire information quickly, such users may be less tolerant of increased delays due to complex searching algorithms.
There is currently not a sufficiently efficient method or system of location identification that facilitates rapid location comparison.
What is needed is an efficient location encoding method and system that allow efficient data comparison.
SUMMARY
The disclosed methods and systems can encode geographic information into a binary number, otherwise known as a geocode and referred to herein as a “bingeo”, that can be compared to other, similarly encoded geographic information using well-known bitwise comparison techniques. In embodiments where the bingeo is binary, the bitwise comparison can provide a geographic comparison without knowledge of underlying geographic information.
The encoding methods and systems can incorporate geographic precision. For example, a bingeo bit can correspond to geographic precision, and generally, the bingeo precision can relate to the geographic precision. In some embodiments, the geographic precision can be specified or selected, and in some embodiments, the precision can be inherently or implicitly stipulated by the geographic information provided for encoding.
Geographic information can include information that can be translated to a coordinate or reference system, using a reference that can be applied to the coordinate system, for example, the reference or coordinate system of latitude and longitude. Geographic information can include, for example, areas codes, street addresses, and zip codes, latitudes and/or longitudes, etc., that can be related to or converted to a reference system using known techniques.
The methods and systems can utilize a reference or coordinate system and iteratively segment the reference system by subdividing individual segments into quadrants. Quadrants can be assigned, for example, a numeric value, wherein the placement of the numeric value within the bingeo relates to the iterative level of quadrant segmentation. The segmentation iteration level can similarly correspond to a geographic precision, as the number of iterations can increase the geographic precision.
In one embodiment, an iterative segmentation scheme can be provided. In a first iteration, the segmentation scheme can be applied to the entire coordinate system, while in subsequent segmentations, the segmentation scheme may only be applied to the subdivision or segment that includes the location of interest. Similarly, in an embodiment, a methodology or other scheme for assigning binary digits, coordinated with the segmentation scheme, can be iteratively performed in an identical manner for the different segmentation levels.
In one embodiment, the encoded binary representations can be used to generate at least one database having binary encoded locations of services, items, etc. A system can process requests from a user desiring services, items, etc., related to a specified geography, wherein the system can receive either the specified geography information, or the binary encoded form thereof, for extremely efficient comparison and identification of similarly located services, items, etc. Because the bingeo can be binary and can facilitate bitwise comparison, processor or microprocessor-based comparison can be extremely efficient.
The methods and systems can identify geographic locations near a quadrant border, wherein fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Location encoder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Location encoder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Location encoder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3017917

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.