Local control of multiple context processing elements with...

Electrical computers and digital processing systems: processing – Processing architecture – Array processor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S241000, C712S016000, C712S228000, C712S229000

Reexamination Certificate

active

06751722

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to array based computing devices. More particularly, this invention relates to a semiconductor chip architecture that provides for local control of field programmable gate arrays in a network configuration.
BACKGROUND OF THE INVENTION
Advances in semiconductor technology have greatly increased the processing power of a single chip general purpose computing device. The relatively slow increase in the inter-chip communication bandwidth requires modern high performance devices to use as much of the potential on chip processing power as possible. This results in large, dense integrated circuit devices and a large design space of processing architectures. This design space is generally viewed in terms of granularity, wherein granularity dictates that designers have the option of building very large processing units, or many smaller ones, in the same silicon area. Traditional architectures are either very coarse grain, like microprocessors, or very fine grain, like field programmable gate arrays (FPGAs).
Microprocessors, as coarse grain architecture devices, incorporate a few large processing units that operate on wide data words, each unit being hardwired to perform a defined set of instructions on these data words. Generally, each unit is optimized for a different set of instructions, such as integer and floating point, and the units are generally hardwired to operate in parallel. The hardwired nature of these units allows for very rapid instruction execution. In fact, a great deal of area on modern microprocessor chips is dedicated to cache memories in order to support a very high rate of instruction issue. Thus, the devices efficiently handle very dynamic instruction streams.
Most of the silicon area of modern microprocessors is dedicated to storing data and instructions and to control circuitry. Therefore, most of the silicon area is dedicated to allowing computational tasks to heavily reuse the small active portion of the silicon, the arithmetic logic units (ALUs). Consequently very little of the capacity inherent in a processor gets applied to the problem; most of the capacity goes into supporting a high diversity of operations.
Field programmable gate arrays, as very fine grain devices, incorporate a large number of very small processing elements. These elements are arranged in a configurable interconnected network. The configuration data used to define the functionality of the processing units and the network can be thought of as a very large semantically powerful instruction word allowing nearly any operation to be described and mapped to hardware.
Conventional FPGAs allow finer granularity control over processor operations, and dedicate a minimal area to instruction distribution. Consequently, they can deliver more computations per unit of silicon than processors, on a wide range of operations. However, the lack of resources for instruction distribution in a network of prior art conventional FPGAs make them efficient only when the functional diversity is low, that is when the same operation is required repeatedly and that entire operation can be fit spatially onto the FPGAs in the system.
Furthermore, in prior art FPGA networks, retiming of data is often required in order to delay data. This delay is required because data that is produced by one processing element during one clock cycle may not be required by another processing element until several clock cycles after the clock cycle in which it was made available. One prior art technique for dealing with this problem is to configure some processing elements to function as memory devices to store this data. Another prior art technique configures processing elements as delay registers to be used in the FPGA network. The problem with both of these prior art technique is that valuable silicon is wasted by using processing elements as memory and delay registers.
Dynamically programmable gate arrays (DPGAs) dedicate a modest amount of on-chip area to store additional instructions allowing them to support higher operational diversity than traditional FPGAs. However, the silicon area necessary to support this diversity must be dedicated at fabrication time and consumes area whether or not the additional diversity is required. The amount of diversity supported, that is, the number of instructions supported, is also fixed at fabrication time. Furthermore, when regular data path operations are required all instruction stores are required to be programmed with the same data using a global signal broadcasted to all DPGAs.
The limitations present in the prior art FPGA and DPGA networks in the form of limited control over configuration of the individual FPGAs and DPGAs of the network severely limits the functional diversity of the networks. For example, in one prior art FPGA network, all FPGAs must be configured at the same time to contain the same configurations. Consequently, rather than separate the resources for instruction storage and distribution from the resources for data storage and computation, and dedicate silicon resources to each of these resources at fabrication time, there is a need for an architecture that unifies these resources. Once unified, traditional instruction and control resources can be decomposed along with computing resources and can be deployed in an application specific manner. Chip capacity can be selectively deployed to dynamically support active computation or control reuse of computational resources depending on the needs of the application and the available hardware resources.
SUMMARY OF THE INVENTION
A method and apparatus for providing local control of processing elements in a network of multiple context processing element are provided. According to one aspect of the invention, a multiple context processing element is configured to store a number of configuration memory contexts. This multiple context processing element maintains data of a current configuration. State information is received from at least one other multiple context processing element. The state information comprises at least one bit received over a multiple level network, the bit representative of at least one configuration memory context of the multiple context processing element from which it is received. At least one configuration control signal is generated in response to the state information and the data of a current configuration. One of multiple configuration memory contexts is selected in response to the received state information and the data of a current configuration. The selected configuration memory context controls the multiple context processing element.
Each multiple context processing element in the networked array of multiple context processing elements has an assigned physical and virtual identification. Data is transmitted to at least one of the multiple context processing elements of the array, the data comprising control data, configuration data, an address mask, and a destination identification. The transmitted address mask is applied to either the physical or virtual identification and to a destination identification. The masked physical or virtual identification is compared to the masked destination identification. When the masked physical or virtual identification of a multiple context processing element matches the masked destination identification, at least one of the number of multiple context processing elements are manipulated in response to the transmitted data. Manipulation comprises selecting one of a number of configuration memory contexts to control the functioning of the multiple context processing element.
These and other features, aspects, and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description and appended claims which follow.


REFERENCES:
patent: 4597041 (1986-06-01), Guyer et al.
patent: 4748585 (1988-05-01), Chiarulli et al.
patent: 4754412 (1988-06-01), Deering
patent: 4858113 (1989-08-01), Saccardi
patent: 4870302 (1989-09-01), Freeman
patent: 5020059 (1991-05-01), Gorin et a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Local control of multiple context processing elements with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Local control of multiple context processing elements with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Local control of multiple context processing elements with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363542

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.