Gas and liquid contact apparatus – Fluid distribution – Pumping
Reexamination Certificate
2001-09-28
2003-06-17
Joyce, Harold (Department: 3749)
Gas and liquid contact apparatus
Fluid distribution
Pumping
C119S436000
Reexamination Certificate
active
06578828
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention generally relates to devices and systems for sheltering livestock and more specifically to a programmable system for efficiently using evaporative cooling devices to create an environment which protects the health and productivity of the animals.
It is known in animal agriculture to cool livestock with evaporative cooling by wetting the animal and then drying the animal through mechanical ventilation or via natural ventilation. Alternatively, lowering the temperature of the environment will also cool animals if the decreased temperature may be maintained. The disclosed system provides cooling to livestock through direct evaporative cooling and also by decreasing the temperature of the livestock environment.
The disclosed system may deliver water to a given area without wetting the area, unlike the other known devices which wet one area continuously and usually result in wet bedding. With the disclosed system, by the time a fan oscillates back to the original zone, water previously emitted has partially or totally evaporated. The disclosed system allows the wetting-drying cycle to be accelerated or decelerated to maximize evaporative cooling given current environmental conditions. Temperature and humidity are monitored so that the maximum amount of water for evaporative cooling can be supplied to each fan under real time environmental conditions. The upper constraint on the amount of water delivered by each fan will usually be a volume of water which would wet the animal's bedding. Other environmental conditions may also be monitored, such as wind velocity, the intensity of sunlight, or the position of the sun with respect to the location of the livestock and a shading structure.
The disclosed system can be configured to emit water at high pressure so as to result in flash evaporation of the extremely small water particles which come into contact with any warm surface such as the skin of an animal or person. The result is a cool animal environment with little wetting of the animal's hair-coat and virtually no wetting of the animal's bedding.
Each fan within a fan circuit can be stopped and started in any position. The oscillation of a fan circuit is totally programmable. The oscillation of a fan circuit can be concentrated in a particular degree range at certain times of the day to increase animal comfort. The speed at which each fan circuit oscillates is programmable through the entire range of oscillation. A faster oscillation speed may be desired in areas prone to wetting, such as free-stall beds. Alternatively, slower oscillation may be desired in other areas, such as over cement alleyways. Programming can be changed at any time to meet the individual preferences of the animal herds person.
Water output can be varied according to a pre-programmed schedule or through constant monitoring of current environmental conditions. Current temperature, humidity and wind conditions may be monitored and water output controlled accordingly by a variable-frequency-drive on the high-pressure water pump. Water output may also be controlled by switching nozzle sizes, instead of or in addition to changing pump pressure output. In conjunction with programmable oscillation, programmable water output allows the herds person to fine tune the animal's environment for maximum economic gain and animal comfort.
Typical Applications of the Disclosed System
Dry-Lot Dairies
A typical dry-lot dairy application of the disclosed system is to provide a range of oscillation for a fan circuit, where the fan air stream is directed under the shade structure during those times of day when the shade, and therefore the cows, are underneath the shade structure. As the sun travels across the sky the shade produced moves away from the shade structure. The cows follow the shade away from the shade structure. The programmable nature of the disclosed system allows a fan circuit to follow the shade and oscillate in the area where cooling is needed.
Free-Stall Dairies
In a free-stall dairy application, fans within a fan circuit may be mounted at the feed lane, between the free-stall beds, or on the outer columns of the building. The mounting arrangement chosen can optimize any prevailing winds. A fan circuit may be programmed to oscillate from the outer alley of the building to the feed lane. This oscillation action completely cools the living area of the cows. A novel feature of the disclosed system is that a fan circuit may be programmed to put out more water while oscillating over the cement alleys, and less water while oscillating across free-stall beds. In addition, the speed at which a fan circuit oscillates can be decreased over the cement alleys and/or increased over the beds. This feature of the disclosed system prevents the build-up of water on the free-stall beds which can be hazardous to the health of the livestock. Wet bedding is an ideal environment for microorganism growth which can result in a cow contracting mastitis, or inflammation of the mammary gland.
During feeding times, fans within a fan circuit can either be parked at a fixed direction or the oscillation range of the fan circuit restricted, so the fans cool the feeding area intensively while the cows are eating and/or just after the cows return from the milking barn.
Saudi Style (A.K.A. Beach Barns)
In a Saudi Style Barn, popular in hot-dry climates such as Arizona and Mid-Eastern Countries, fan circuits mounted on the feed lanes result in effective cooling of the entire barn. Other mounting arrangements such as outer-building support posts can be utilized to take advantage of any prevailing winds. As with free-stall barns, the fans can be programmed for cooling the cows at the feed lane more intensively during feeding times and/or after milking.
SUMMARY OF THE INVENTION
The present invention is directed to a livestock cooling system which creates an environment which protects the health and productivity of the animals. The livestock cooling system comprises a structure, the structure comprising a roof connected to supporting members, at least one electrically-powered fan creating an air stream, the fan rotatably coupled to the structure, oscillation means connected to the fan for rotating the fan through a plurality of rotational positions, means for injecting water droplets into the air stream of the fan, at least one sensing device positioned to sense environmental conditions and adapted to produce a signal in response to said conditions, and input/output means for receiving the signal produced by the sensing device and outputting a signal limiting the plurality of rotational positions through which the fan is rotated. The livestock cooling system may further comprise controller means for controlling the oscillation means and the means for injecting water droplets into the air stream. The controller means comprise, in part, a plurality of sensing devices positioned to sense environmental conditions and adapted to produce a signal in response to those conditions, a position indication device to determine the rotational position of the fan, where the position indication device is adapted to produce a signal in response to the rotational position. The controller means further comprise programmable input/output means adapted for receipt and storage of input from the sensing devices and the fan position indication device, where the programmable input/output means is formed to produce an output signal based upon the input received from the sensing devices and the position indication device. Power means are adapted to receive a signal produced by the programmable input/output means, where the power means are coupled to the oscillation means for operation of the oscillation means. Pressure control means are adapted to receive a signal produced by the programmable input/output means, where the pressure control means are coupled to the means for injecting water droplets into the air stream for controlling the output pressure of the same.
A variety of different environmental condition
Marks Frank Gilbert
Terrell Michael E.
LandOfFree
Livestock cooling system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Livestock cooling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Livestock cooling system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3157024