Electricity: magnetically operated switches – magnets – and electr – Electromagnetically actuated switches – Polarity-responsive
Reexamination Certificate
2011-05-03
2011-05-03
Enad, Elvin G (Department: 2832)
Electricity: magnetically operated switches, magnets, and electr
Electromagnetically actuated switches
Polarity-responsive
C200S181000
Reexamination Certificate
active
07936240
ABSTRACT:
Lithographically fabricated apparatus are provided. The apparatus are capable of self-assembly to extend at least in part in an out-of-plane direction. A cantilever arm is anchored to a substrate at one of its ends and fabricated to provide a cantilever portion that extends from the anchor in a longitudinal direction generally parallel to the substrate, One or more posts are fabricated atop the cantilever portion. The posts shrink from a first volume to a second volume, less than the first volume, during fabrication thereof. The change in volume of the post from the first volume to the second volume causes stress between the post and the cantilever arm resulting in the cantilever portion bending from an in-plane orientation extending in the longitudinal direction to a self-assembled orientation extending at least in part in an out-of-plane direction away from the substrate.
REFERENCES:
patent: 6101371 (2000-08-01), Barber et al.
patent: 6127908 (2000-10-01), Bozler et al.
patent: 6191671 (2001-02-01), Schlaak et al.
patent: 6271802 (2001-08-01), Clark et al.
patent: 6392524 (2002-05-01), Biegelsen et al.
patent: 6625004 (2003-09-01), Musolf et al.
patent: 6731492 (2004-05-01), Goodwin-Johansson
patent: 7000315 (2006-02-01), Chua et al.
patent: 7053737 (2006-05-01), Schwartz et al.
patent: 7133185 (2006-11-01), Wen et al.
patent: 7196599 (2007-03-01), Dabbaj
patent: 7372348 (2008-05-01), Xu et al.
patent: 7453339 (2008-11-01), Fork et al.
patent: 7498715 (2009-03-01), Yang
patent: 2007/0024506 (2007-02-01), Hardacker
P. J. French and P. M. Sarro, “Surface versus bulk micromachining: the contest for suitable applications,” J. Micromech. Microeng, vol. 8, pp. 45-53, 1998.
B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” Electron Devices, IEEE Transactions on, vol. 36, pp. 663-669, 1989.
W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Materials and Structures, vol. 6, pp. 530-539, 1997.
H. T. G. van Lintel, F. C. M. van de Pol, and S. Bouwstra, “A piezoelectric micropump based on micromachining of silicon,” Sensors and Actuators, vol. 15, pp. 153-167, 1988.
S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” Electron Devices, IEEE Transactions on, vol. 48, pp. 377-385, 2001.
H. Takeuchi, A. Wung, X. Sung, R.T. Howe, and R. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” Electron Devices, IEEE Transactions on, vol. 52, pp. 2081-2086, 2005.
C. H. Ahn, Y. J. Kim, and M. G. Allen, “A planar variable reluctance magnetic micromotor with fully integrated stator and coils,” Microelectromechanical Systems, Journal of, vol. 2, pp. 165-173, 1993.
W. S. N. Trimmer and K. J. Gabriel, “Design considerations for a practical electrostatic micro-motor,” Sensors Actuators., vol. 11, pp. 189-206, 1987.
P. B. Chu, S. S. Lee, and S. Park, “MEMS: the path to large optical crossconnects,” Communications Magazine, IEEE, vol. 40, pp. 80-87, 2002.
S. H. Tsang, D. Sameoto, I. G. Foulds, R. W. Johnstone, and M. Parameswaran, “Automated assembly of hingeless 90 degrees out-of-plane microstructures,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1314-1325, 2007 (published Jun. 5, 2007).
M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Microelectromechanical Systems, Journal of, vol. 7, pp. 27-37, 1998.
Y. Mizuno, O. Tsuboi, N. Kouma, H. Soneda, H. Okuda, Y. Nakamura, S. Ueda, I. Sawaki, and F. Yamagishi, “A 2-axis comb-driven micromirror array for 3D MEMS switches,” Optical MEMs, 2002. Conference Digest. 2002 IEEE/LEOS International Conference on, pp. 17-18, 2002.
V. Kaajakari and A. Lal, “Electrostatic batch assembly of surface MEMS using ultrasonic triboelectricity,” in Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference on, 2001, pp. 10-13.
T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” Microelectromechanical Systems, Journal of, vol. 6, pp. 10-17, 1997.
L. Buchaillot, O. Millet, E. Quevy and D. Collard, “Post-buckling dynamic behavior of self-assembled 3D microstructures,” Microsystem Technologies, vol. 14, pp. 69-78, 2007 (published online Mar. 2007).
E. Quevy, L. Buchaillot, and D. Collard, “3-D self-assembling and actuation of electrostatic microstructures,” Electron Devices, IEEE Transactions on, vol. 48, pp. 1833-1839, 2001.
M. J. Sinclair, “A high force low area MEMS thermal actuator,” Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000. The Seventh Intersociety Conference on, vol. 1, pp. 127-132, 2000.
J. A. Wright, Y. C. Tai, and S. C. Chang, “A large-force, fully-integrated MEMS magnetic actuator,” Solid State Sensors and Actuators, 1997. Transducers'97 Chicago., 1997 International Conference on, vol. 2, pp. 793-796, 1997.
R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Non-uniform residual stresses for parallel assembly of out-of-plane surface-micromachined structures,” Journal of Micromechanics and Microengineering, vol. 16, pp. N17-N22, 2006 (published Sep. 26, 2006).
G. W. Dahlmann, E. M. Yeatman, P. R. Young, I. D. Robertson, and S. Lucyszyn, “MEMS high Q microwave inductors using solder surface tension self-assembly,” in Microwave Symposium Digest, 2001 IEEE MTT-S International, 2001, pp. 329-332 vol. 1.
R. R. A. Syms, “Surface tension powered self-assembly of 3-D micro-optomechanical structures,” Microelectromechanical Systems, Journal of, vol. 8, pp. 448-455, 1999.
R. R. A. Syms, C. Gormley, and S. Blackstone, “Improving yield, accuracy and complexity in surface tension self-assembled MOEMS,” Sensors and Actuators A: Physical, vol. 88, pp. 273-283, 2001.
R. R. A. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures—the state-of-the-art,” Microelectromechanical Systems, Journal of, vol. 12, pp. 387-417, 2003.
W. J. Arora, A. J. Nichol, H. I. Smith, and G. Barbastathis, “Membrane folding to achieve three-dimensional nanostructures: Nanopatterned silicon nitride folded with stressed chromium hinges,” Applied Physics Letters, vol. 88, pp. 053108-3, 2006 (published Jan. 31, 2006).
C. L. Chua, D. K. Fork, K. Van Schuylenbergh, and Jeng-Ping Lu, “Out-of-plane high-Q inductors on low-resistance silicon,” Microelectromechanical Systems, Journal of, vol. 12, pp. 989-995, 2003.
H. J. In, W. J. Arora, P. Stellman, S. Kumar, Y. Shao-Horn, H. I. Smith, and G. Barbastathis, “The nanostructured Origami 3D fabrication and assembly process for nanopatterned 3D structures,” in Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, San Diego, CA, USA, 2005, pp. 84-95.
S. M. Jurga, C. H. Hidrovo, J. Niemczura, H. I. Smith, and G. Barbastathis, “Nanostructured origami,” in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 2003, pp. 220-223 vol. 2.
L. Lijie, J. Zawadzka, and D. Uttamchandani, “Integrated self-assembling and holding technique applied to a 3-D MEMS variable optical attenuator,” Microelectromechanical Systems, Journal of, vol. 13, pp. 83-90, 2004.
T. Ebefors, E. Kalvesten, and G. Stemme, “Three dimensional silicon triple-hot-wire anemometer based on polyimide joints,” in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on, 1998, pp. 93-98.
T. Ebefors, E. Kal
Lee Sae Won
Mahanfar Alireza
Parameswaran Meenakshinathan Ash
Sameoto Daniel Elliot
Vaughan Rodney Grant
Enad Elvin G
Oyen Wiggs Green & Mutala LLP
Rojas Bernard
Simon Fraser University
LandOfFree
Lithographically controlled curvature for MEMS devices and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lithographically controlled curvature for MEMS devices and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithographically controlled curvature for MEMS devices and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2636308