Lithographic projection apparatus

Photocopying – Projection printing and copying cameras – Illumination systems or details

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C355S053000, C355S067000, C356S450000, C356S486000, C356S493000

Reexamination Certificate

active

06384899

ABSTRACT:

The present invention relates to a lithographic projection apparatus comprising:
a radiation system for supplying a projection beam of radiation;
a mask table provided with a mask holder for holding a mask;
a substrate table provided with a substrate holder for holding a substrate;
a projection system for imaging an irradiated portion of the mask onto a target portion of the substrate.
More specifically, the invention relates to subsystems of such an apparatus which employ coherent light beams, e.g. as produced by a laser. In particular, the invention relates to an interferometric measurement system, especially as employed in an alignment system, a leveling system or a stage-position-measuring system, for example.
Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, the mask (reticle) may contain a circuit pattern corresponding to an individual layer of the IC, and this pattern can then be imaged onto a target area (die) on a substrate (silicon wafer) which has been coated with a layer of photosensitive material (resist). In general, a single wafer will contain a whole network of adjacent dies that are successively irradiated through the reticle, one at a time. In one type of lithographic projection apparatus, each die is irradiated by exposing the entire reticle pattern onto the die in one go; such an apparatus is commnonly referred to as a waferstepper. In an alternative apparatus—which is commonly referred to as a step-and-scan apparatus—each die is irradiated by progressively scanning the reticle pattern under the projection beam in a given reference direction (the “scanning” direction) while synchronously scanning the wafer table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally<1), the speed &ngr; at which the wafer table is scanned will be a factor M times that at which the reticle table is scanned. More information with regard to lithographic devices as here described can be gleaned from International Patent Application WO 97133205.
Up to very recently, apparatus of this type contained a single mask table and a single substrate table. However, machines are now becoming available in which there are at least two independently movable substrate tables; see, for example, the multi-stage apparatus described in International Patent Applications WO 98/28665 and WO 98/40791. The basic operating principle behind such multi-stage apparatus is that, while a first substrate table is underneath the projection system so as to allow exposure of a first substrate located on that table, a second substrate table can run to a loading position, discharge an exposed substrate, pick up a new substrate, perform some initial alignment measurements on the new substrate, and then stand by to transfer this new substrate to the exposure position underneath the projection system as soon as exposure of the first substrate is completed, whence the cycle repeats itself; in this manner, it is possible to achieve a substantially increased machine throughput, which in turn improves the cost of ownership of the machine.
The projection radiation in current lithographic devices is generally UV (ultra-violet) light with a wavelength of 365 nm, 248 nm or 193 nm. However, the continual shrinkage of design rules in the semiconductor industry is leading to an increasing demand for new radiation types. Current candidates for the near future include UV light with wavelengths of 157 nm or 126 nm, as well as extreme UV light (EUV) and particle beams; (e.g. electron or ion beams).
Interferometric measurement systems can be employed in a variety of subsystems in a lithographic projection apparatus, for example:
for the precision alignment of a mask relative to a substrate;
for the precise leveling of a substrate and/or mask relative to the projection beam, as directed onto a particular target area of the substrate;
for the accurate determination of position, velocity and/or acceleration of the substrate and/or mask stages.
In one example of an interferometric measurement system, a coherent light beam is divided into two beams, for example by a diffraction grating provided on a first component (e.g. a reticle). The two beams are then recombined to form an interference pattern that impinges on a transmission grating provided on a second component (e.g. a wafer). The coincidence of the interference pattern and the second grating produces a Moire pattern. The total transmitted intensity varies with the phase of the Moire pattern, which is in turn a function of the relative displacement of the first and second components. Therefore, the relative positions of the components can be determined with high resolution by detecting the overall transmitted intensity.
It should be explicitly noted that the projection radiation used in the lithographic projection apparatus may be of a different type or wavelength to the coherent light beam used in an interferometric measurement system as hereabove described. For example, in the case of a DUV projection apparatus, the projection wavelength is 248 nm, but the alignment system, leveling system and stage-position-measurement system often employ radiation from a HeNe laser (wavelength=632 nm), or a diode laser, for example.
In an interferometric measurement system as here described, it is important that the positions of the said first and second components can be determined reproducibly (e.g. so that registration marks are correctly aligned for different exposures). However, considerable problems can be caused by the presence of noise in the measurement signal produced by the system, which can lead to poor reproducibility and reduced measurement precision (in turn leading to significant errors in such factors as overlay performance, focus, and scan synchronization, for example).
It is an object of the invention to alleviate this problem.
Accordingly, the presently invention provides an optical measurement system comprising:
a source of substantially coherent radiation;
a detector for detecting a desired signal resulting from interference between beams derived from said source,
characterized by a phase modulator for modulating the phase of radiation emitted by said radiation source, whereby detection of at least one spurious signal, caused by interference from at least one spurious beam in the optical measurement system, is suppressed.
In experiments leading to the invention, the present inventors determined that noise in the measurement signal of such an optical measurement system can be caused by the presence of a spurious radiation beam, e.g. arising from:
an unmasked reflection at an air/glass interface within the (typically) complex projection lens of the lithographic projection apparatus, or within other optical systems, e.g. as used in the radiation system or alignment system;
a similar reflection occurring at the reticle.
However, the precise location of such a reflection is generally difficult to determine. Moreover, the provision of anti-reflection coatings on the optical components of the apparatus does not generally provide an effective cure of this problem.
Advantageously, the present invention enables the noise signal to be substantially eliminated without any modification to the detection system: it is only necessary to provide a phase modulator in the radiation source beam path.
Preferably, the phase modulator comprises a controllable attenuator for sequentially modulating the radiation at a plurality of modulation amplitudes. This has the advantage of enabling additional spurious signals to be suppressed, and of allowing suppression of noise signals caused by spurious reflections at a range of different positions within the optical measurement system.
Preferably the phase modulator comprises an electro-optic element, such as an LiNbO
3
element, for example. A modulator as here discussed is described, for example, in U.S. Pat. No. 5,189,547, which is incorporated herein by reference.
The above aspects of the i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lithographic projection apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lithographic projection apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithographic projection apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2878158

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.