Lithographic printing method

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C101S450100, C524S556000, C526S318450, C526S336000

Reexamination Certificate

active

06646025

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to compositions of lithographic printing inks and lithographic printing methods.
BACKGROUND OF THE INVENTION
Printing inks generally include one or more vehicles and one or more colorants as principal components. Printing ink vehicles must meet a number of performance requirements that include both requirements related to the printing process, such as suitable consistency and tack for sharp, clean images, suitable length to avoid fly or mist, or proper drying characteristics, and requirements related to the printed image, such as gloss, chemical resistance, durability, or color. In general, ink vehicles include one or more materials such as vegetable oils or fatty acids, resins, and polymers that contribute to the end product properties, and may include other components such as organic solvents, water, rheology modifiers, and so on that may affect body, tack, or drying characteristics.
In lithographic printing, an inked printing plate contacts and transfers an inked image to a rubber blanket, and then the blanket contacts and transfers the image to the surface being printed. Lithographic plates are produced by treating the image areas of the plate with an oleophilic material and ensuring that the non-image areas are hydrophilic. In a typical lithographic printing process, the plate cylinder first comes in contact with dampening rollers that transfer an aqueous fountain solution to the hydrophilic non-image areas of the plate. The dampened plate then contacts an inking roller, accepting the ink only in the oleophilic image areas. The press operator must continually monitor the printing process to insure that the correct balance of the fountain solution and the ink is maintained so that the ink adheres to the printing areas, but only the printing areas, of the plate in order to produce a sharp, well-defined print.
The industry has long sought an offset printing process and associated materials that would not require a separate fountain solution. Waterless plates have been made by applying to the non-image area a silicone rubber, which has a very low surface energy and is not wetted by the ink. The silicone-modified plates are expensive, however, and require expensive, specially-cooled press equipment because the fountain solution of the traditional two-fluid method also serves as a coolant. Other efforts have been directed to producing a single-fluid lithographic ink, i.e., an ink that does not require a separate fountain solution, that can be used with the industry-standard presses and all-metal plates. Parkinson, in U.S. Pat. No. 4,045,232 (the entire disclosure of which is expressly incorporated herein by reference) describes lithographic printing and earlier efforts directed to producing a single-fluid lithographic ink and the tendency of single-fluid inks to be unstable. Parkinson notes that ink emulsions containing a solution of glycerin and salts tend to “break,” with the result that the glycerin wets the inking rollers preventing good inking. Parkinson suggests an improved single-fluid ink obtained by using an additive that includes a resin treated with a concentrated mineral acid, and, optionally, a polyhydric or monohydric alcohol. Preferred polyols are glycerin, ethylene glycol, and propylene glycol. DeSanto, Jr. et al, in U.S. Pat. No. 4,981,517 (the entire disclosure of which is expressly incorporated herein by reference) describe a printing ink that is an emulsion of an oil-based phase and a water-miscible phase. The patentees allege that an emulsion containing a significant portion of water (10% to 21%) and employing phosphoric acid as a critical component has improved stability against phase separation and can be used as a single-fluid lithographic ink. The De Santo, Jr. composition further includes as a diluent and emulsion stabilizer an oil with the properties of No. 1 and No. 2 fuel oils and a polyol emulsifier, of which glycerin and ethylene glycol are the only examples provided.
Nonetheless, due to various drawbacks of the single-fluid lithographic inks that have previously been proposed, including the limited stability and poor definition and toning already mentioned, the industry standard continues to be a dual-fluid lithographic ink that includes an ink component and a separate fountain solution component.
Applicants have now discovered that an ink composition that includes a polyol phase dispersed or emulsified in an acid-functional vinyl resin vehicle phase overcomes these problems in a single-fluid lithographic ink.
SUMMARY OF THE INVENTION
The invention provides a single fluid lithographic printing ink composition that includes a hydrophobic phase and a polyol phase. The hydrophobic phase comprises at least a vinyl resin having carboxyl functionality. The term “vinyl resin” when used in conjunction with the present invention includes polymers prepared by chain reaction polymerization, or addition polymerization, through carbon-carbon double bonds, using vinyl monomers such as acrylic and methacrylic monomers, vinyl aromatic monomers including styrene, and monomers copolymerizable with these. The vinyl polymers of the invention may be branched by including in the polymerization reaction monomers that have two reaction sites. When the vinyl polymer is branched, it nonetheless remains usefully soluble. By “soluble” it is meant that the polymer can be diluted with one or more solvents. (By contrast, polymers may be crosslinked into insoluble, three-dimensional network structures that are only be swelled by solvents.) The branched vinyl resins of the invention unexpectedly retain solubility in spite of significant branching.
The invention further provides a method of making an ink composition having a phase that includes a vinyl resin having carboxyl functionality and a polyol phase. In another aspect of the invention, the vinyl-based printing ink is modified by the addition of another vehicle resin. The invention also provides a process of printing using the single fluid ink of the invention.
The invention has unexpectedly provided stable inks that can be used as single fluid inks with improved resistance to toning.
DETAILED DESCRIPTION OF THE INVENTION
The invention provides a single fluid lithographic printing ink composition that includes a hydrophobic phase and a polyol phase. The hydrophobic phase comprises at least a vinyl resin having carboxyl functionality. The term “vinyl resin” when used in conjunction with the present invention includes polymers prepared by chain reaction polymerization, or addition polymerization, through carbon-carbon double bonds, using vinyl monomers and monomers copolymerizable with vinyl monomers. Typical vinyl monomers include, without limitation, vinyl esters, acrylic and methacrylic monomers, and vinyl aromatic monomers including styrene. The vinyl polymers of the invention may be branched by including in the polymerization reaction monomers that have two reaction sites. When the vinyl polymer is branched, it nonetheless remains usefully soluble. By “soluble” it is meant that the polymer can be diluted with one or more solvents. (By contrast, polymers may be crosslinked into insoluble, three-dimensional network structures that are only be swelled by solvents.) The branched vinyl resins of the invention unexpectedly retain solvent dilutability in spite of significant branching.
The carboxyl-functional vinyl polymers of the invention may be prepared by polymerization of a monomer mixture that includes at least one acid-functional monomer or at least one monomer that has a group that is converted to an acid group following polymerization, such as an anhydride group. Examples of acid-functional or anhydride-functional monomers include, without limitation, &agr;,&bgr;-ethylenically unsaturated monocarboxylic acids containing 3 to 5 carbon atoms such as acrylic, methacrylic, and crotonic acids; &agr;, &bgr;-ethylenically unsaturated dicarboxylic acids containing 4 to 6 carbon atoms and the anhydrides and monoesters those acids, such as maleic anhydride, and fumaric acid;

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lithographic printing method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lithographic printing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithographic printing method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3164311

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.