Lithographic fabrication of phase mask for fiber Bragg gratings

Optical waveguides – With optical coupler – Input/output coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S005000

Reexamination Certificate

active

06778733

ABSTRACT:

BACKGROUND
Normal optical fibers are uniform along their lengths. A slice from any one point of the fiber looks like a slice taken from anywhere else on the fiber, disregarding tiny imperfections. However, it is possible to make fibers in which the refractive index varies regularly along their length. These fibers are called fiber gratings because they interact with light like diffraction gratings. Their effects on light passing through them depend very strongly on the wavelength of the light.
A diffraction grating is a row of fine parallel lines, usually on a reflective surface. Light waves bounce off of the lines at an angle that depends on their wavelength, so light reflected from a diffraction grating spreads out in a spectrum. In fiber gratings, the lines are not grooves etched on the surface, instead they are variations in the refractive index of the fiber material. The variations scatter light by what is called the Bragg effect, hence fiber Bragg gratings (FBGs). Bragg effect scattering is not exactly the same as diffraction scattering, but the overall effect is similar. Bragg scattering reflects certain wavelengths of light that resonate with the grating spacing while transmitting other light.
FBGs are used to compensate for chromatic dispersion in an optical fiber. Dispersion is the spreading out of light pulses as they travel on the fiber. Dispersion occurs because the speed of light through the fiber depends on its wavelength, polarization, and propagation mode. The differences are slight, but accumulate with distance. Thus, the longer the fiber, the more dispersion. Dispersion can limit the distance a signal can travel through the optical fiber because dispersion cumulatively blurs the signal. After a certain point, the signal has become so blurred that it is unintelligible. The FBGs compensate for chromatic (wavelength) dispersion by serving as a selective delay line. The FBG delays the wavelengths that travel fastest through the fiber until the slower wavelengths catch up. The spacing of the grating is chirped, changing along its length, so that different wavelengths are reflected at different points along the fiber. These points correspond to the amount of delay that the particular wavelengths need to have so that dispersion is compensated. Suppose that the fiber induces dispersion such that a longer wavelength travels faster than a shorter wavelength. Thus, a longer wavelength would have to travel farther into the FBG before being reflected back. A shorter wavelength would travel less far into the FBG. Consequently, the longer and shorter wavelengths can be made coincidental, and thus without dispersion. FBGs are discussed further in Feng et al. U.S. Pat. No. 5,982,963, which is hereby incorporated herein by reference in its entirety. A circulator is used to move the reflected beam onto an different path from the input beam.
FBGs are typically fabricated in two manners. The first manner uses a phase mask. The phase mask is quartz slab that is patterned with a grating. The mask is placed in close proximity with the fiber, and ultraviolet light, usually from an ultraviolet laser, is shined through the mask and onto the fiber. As the light passes through the mask, the light is primarily diffracted into two directions, which then forms an interference pattern on the fiber. The interference pattern comprises regions of high and low intensity light. The high intensity light causes a change in the index of refraction of that region of the fiber. Since the regions of high and low intensity light are alternating, a FBG is formed in the fiber. See also Kashyap, “Fiber Bragg Gratings”, Academic Press (1999), ISBN 0-12-400560-8, which is hereby incorporated herein by reference in its entirety.
The second manner is known as the direct write FBG formation. In this manner two ultraviolet beams are impinged onto the fiber, in such a manner that they interfere with each other and form an interference pattern on the fiber. At this point, the FBG is formed in the same way as the phase mask manner. One of the fiber and the writing system is moved with respect to the other such that FBG is scanned or written into the fiber. Note that the two beams are typically formed from a single source beam by passing the beam through a beam separator, e.g. a beamsplitter or a grating. Also, the two beams are typically controlled in some manner so as to allow control over the locations of the high and low intensity regions. For example, Laming et al., WO 99/22256, which is hereby incorporated herein by reference in its entirety, teaches that the beam separator and part of the focusing system is moveable to alter the angle of convergence of the beams, which in turn alters the fringe pitch on the fiber. Another example is provided by Glenn, U.S. Pat. No. 5,388,173, and Stepanov et al., WO 99/63371, which are hereby incorporated herein by reference in their entirety, and teach the use of an electro-optic module, which operates on the beams to impart a phase delay between the beams, which in turn controls the positions of the high and low intensity regions.
Each manner has advantages and disadvantages when compared with each other. For example, the first manner, the phase mask manner, is relatively inflexible, as changes cannot be made to the mask. However, since the phase mask is permanent, the phase mask manner is stable, repeatable, and aside from the cost of the mask, relatively inexpensive to operate. On the other hand, the direct write manner is very flexible, and can write different gratings. However, this manner is less repeatable and is costly to operate.
Another problem with the phase mask manner resides in the fabrication of the masks. Masks are fabricated by lithographic or holographic techniques. The mask slab is coated on its surface with light or particle (electron or ion) sensitive or photosensitive material (resist). Under the resist, the slab may also be coated with a metallic layer (e.g. chrome) to assist conduction of charged particles away from the exposed regions. Regions or bars of the resist are illuminated by light or particle beam according to a desired pattern, which is generally an array of parallel bars along a straight line with precisely selected positions. This illumination causes chemical changes in the exposed regions of resist. The exposed resist can be preferentially removed from the slab by a chemical or plasma, which does not strongly affect the unexposed resist (or vice versa). After the preferential removal of the resist according to the desired pattern, the slab may then be etched by a different chemical or plasma which preferentially etches the slab where the resist has been removed. The etched portions of the slab have a difference in thickness or height from the un-etched portions. When the etched (bars) and un-etched (spaces) portions are patterned to form an array along a straight line, the differences in thicknesses form a phase grating. Thus, by applying an array of bars and spaces on the slab to form a grating, a phase mask will be formed. Other lithography tools can directly etch the bars and spaces onto the mask rather than in resist. In another embodiment, these regions can have alternate transmittance properties, such as by the presence or absence of an opaque material (e.g. chrome), and thus form an amplitude grating. Note that in all these cases, the critical part of the fabrication is the exposure of the bars and spaces (or direct etching of the bars and spaces). The resulting mask is limited by the quality and precision of the exposure process.
Current lithographic techniques used in the fabrication of phase masks have a limitation referred to as ‘stitching error’. This originates from repositioning and re-magnification errors, which have the effect of slightly misplacing the periodic structure required in the mask. New optical and e-beam lithography tools have the capability to write continuous patterns (so called cursive writing) effectively without such stitching errors. However, the currently practiced state of the art cannot utilize curs

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lithographic fabrication of phase mask for fiber Bragg gratings does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lithographic fabrication of phase mask for fiber Bragg gratings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithographic fabrication of phase mask for fiber Bragg gratings will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3314228

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.