Lithium secondary battery

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S094000, C429S211000, C429S231400, C429S233000

Reexamination Certificate

active

06258485

ABSTRACT:

BACKGROUND OF THE INVENTION AND RELATED ART STATEMENT
The present invention relates to a lithium secondary battery which is suitably used for driving a motor of particularly an electric vehicle or the like. More particularly, the present invention relates to a lithium secondary battery in which internal resistance is reduced by clarifying a correlation between a form and the like of an internal electrode body and conditions for attaching current collecting tabs and which gives a good charge-discharge property, high output, and high current.
In recent years, while it is eagerly desired to regulate the emission of exhaust gas including carbon dioxide and other harmful substances with the elevation of environment protection campaigns as a background, in the automobile industry, in replacement of automobiles using fossil fuels, such as a vehicle driven by gasoline, the campaign to promote introduction of an electric vehicle (EV) and a hybrid electric vehicle (HEV) has become active.
A lithium secondary battery as a motor-driving battery in EV and HEV is required to have such characteristics as large battery capacity and high battery output to obtain predetermined accelerating ability, gradability and, continuous running ability. For example, in the case of HEV, since a motor is in a mode of assisting the output upon acceleration, the battery which drives the motor is required to have a high output. Therefore, a lithium secondary battery having high energy density is said to be the most preferable one as a battery for driving a motor. However, a voltage per a unit battery depends on the material forming the battery. Since a lithium secondary battery has a voltage of at most about 4.2V, a large output means a large current flow.
Since a plurality of batteries are connected in series to secure a voltage required to drive a motor, the same amount of current flows in each of the batteries. Indeed, in HEV or the like, a current of 100 A or higher often flows. In order to realize such a high output property and a high current property, it is important to reduce an internal resistance of a battery as much as possible.
In the aforementioned lithium secondary battery for HEV or the like, an electrode area in an internal electrode body is naturally large because a battery capacity per unit battery is large. Here, a current collecting tab which connects an internal electrode body with a current extracting terminal plays an important role in taking current effectively out of a battery having a large electrode area. That is, a high resistance of the current collecting tab causes a problem of high energy loss at the time of charging-discharging or melting of the tab.
It can be easily considered that the whole resistance of current correcting tabs can be reduced if the number of the current correcting tabs to be attached is increased. However, this case brings about a difficulty in an operation of attaching all the current correcting tabs to one portion collectively in a process of manufacturing a battery.
On the other hand, in an internal electrode body, a length (length in a winding-axial direction of an electroactive material layer) and a width (width of the electroactive material) of an electrode can be varied, and it is not natural that the number of current collecting tabs should be fixed in various kinds of batteries having various battery capacities. Nevertheless, influence of a relation between length or width of electrode or battery capacity and the number of current collecting tabs on an internal resistance of a battery has not been clarified.
SUMMARY OF THE INVENTION
The present invention has been made in view of the aforementioned problems of the prior art and aims to reduce an internal resistance by clarifying influence of correlation between conditions for attaching current collecting tab and shape, or the like, of the other members constituting the battery on the internal resistance, to determine manufacturing conditions by which variance in properties of batteries is suppressed, and to provide a parameter which can be a guideline for designing a battery.
That is, according to the invention, there is provided a lithium secondary battery, comprising:
an internal electrode body including a positive electrode, a negative electrode, and a separator, the positive electrode and the negative electrode being wound via the separator so that the positive electrode and the negative electrode are not brought into direct contact with each other, and
an organic electrolyte;
wherein an average current collecting area obtained by dividing a positive electrode area (cm
2
) by the number of current-collecting tabs to be attached to the positive and negative electrodes is 360 or less.
According to the present invention, there is further provided a lithium secondary battery, comprising:
an internal electrode body including a positive electrode, a negative electrode, and a separator, the positive electrode and the negative electrode being wound via the separator so that the positive electrode and the negative electrode are not brought into direct contact with each other, and
an organic electrolyte;
wherein a value (hereinbelow referred to as tab/width ratio) obtained by dividing the number of current collecting tabs to be attached to the positive and negative electrodes by a width(mm) of the positive electrode is 0.1 or more.
According to the present invention, there is furthermore provided a lithium secondary battery, comprising:
an internal electrode body including a positive electrode, a negative electrode, and a separator, the positive electrode and the negative electrode being wound via the separator so that the positive electrode and the negative electrode are not brought into direct contact with each other, and
an organic electrolyte;
wherein a value (hereinbelow referred to as tab/capacity ratio) obtained by dividing the number of current collecting tabs to be attached to the positive and negative electrodes by a battery capacity (Ah) is 1.0 or more.
In a lithium secondary battery of the present invention as described above, it is preferable that the current correcting tabs are attached to the positive and negative electrodes at an average interval of not less than twice a width of the current correcting tabs. Such a constitution of a lithium secondary battery is preferably applied to a battery having a capacity of not less than 5 Ah. The battery is preferably used for an electric vehicle or a hybrid electric vehicle.


REFERENCES:
patent: 4293396 (1981-10-01), Allen et al.
patent: 4298666 (1981-11-01), Taskier
patent: 5486215 (1996-01-01), Kelm et al.
patent: 5582936 (1996-12-01), Mrotek et al.
patent: 5849431 (1998-12-01), Kita et al.
patent: 5958625 (1999-09-01), Rao
patent: 5972532 (1999-10-01), Oweis et al.
patent: 6106975 (2000-08-01), Watanabe et al.
patent: 6114059 (2000-09-01), Watanabe et al.
patent: 6117584 (2000-09-01), Hoffman et al.
patent: 6117589 (2000-09-01), Satou et al.
patent: 0 822 605 (1998-02-01), None
patent: 0 917 227 (1999-05-01), None
patent: 10 261439 (1998-09-01), None
patent: 99 17391 (1999-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lithium secondary battery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lithium secondary battery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithium secondary battery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2465586

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.