Lithium-ion and lithium polymer battery recharging

Electricity: battery or capacitor charging or discharging – Battery or cell discharging – Regulated discharging

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C320S136000

Reexamination Certificate

active

06242893

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to safety measures and circuits used with respect to the recharging of relatively powerful and high voltage lithium-ion, lithium polymer and similar type cells and batteries.
BACKGROUND OF THE INVENTION
The development of new battery chemistries, and particularly the commercial development of high capacity and high rate lithium cells, has increased the performance potential of both primary and secondary cells. These new cells tend to have more capacity per unit volume or weight (this is in part attributable to lithium being a light weight material with a very high capacity to weight ratio), or both. However, as a result of the chemistry involved, operating requirements of such cells must be more closely monitored and controlled, especially if rapid charging or discharging is needed.
Failure to observe safety precautions or to take into account different charging characteristics and requirements of such cells will, at the least, reduce the life of the battery and may cause it to overheat, vent, or leak electrolyte.
In addition, lithium batteries have the added potential for major physical damage because of the very high activity of the metal and some of its derivatives. Both users and manufacturers have already suffered extremely serious fires and explosions caused by various kinds of lithium cells, particularly under recharging conditions. Accordingly, charging conditions must be closely controlled to maintain both safety and optimal operation conditions.
Optimum performance of batteries in general is achieved when all cells in the battery are precisely balanced and are being charged and discharged in unison. Untoward events (leakage, venting, etc.) are avoided with such optimum performance conditions and safety is similarly not a problem. It is generally only when there is an imbalance in the system which cause the various untoward events. Though it is possible to overcompensate for the imbalances to ensure safety this is at a major cost of a reduction in cell capacity and performance.
In order to maintain optimum performance conditions it is important to initially determine normal discharge and charging conditions and then to provide means to only permit operation within the normal range of conditions. Thus, in the case of lithium secondary cells, at significant discharge rates, it is hazardous to discharge any cell below a level of about 2.25 volts and it is also necessary to limit charge voltage to 4.24.4 volts per cell, with the variation being a function of construction of the cell. Precise monitoring and shut off circuitry is necessary to avoid the detrimental low voltage discharge and high voltage charging conditions.
Because lithium ion (Li-Ion) cells get very hot under extended (several minutes) discharge at rates well above 1.5 C, it is desirable to be able to limit discharge accurately and predictably to maximize cell performance without the necessity of an excessive cell safety factor. This permits batteries to be designed to meet maximum pulse load requirements without requiring a large 'tolerance window whereby the point where over-current protection begins can be set only slightly higher than the highest specified operating current.
Normally, the charging protocol for Li-Ion batteries is relatively simple. The charger is set to charge at a limited maximum rate (depending upon the cell size and arrangement), which changes to fixed voltage when the battery approaches the desired maximum voltage per cell, A good quality laboratory power supply can do this quite easily, and many older chargers are adjustable to accomplish this as well.
If, however, a Li-Ion battery is placed on a charger which is set for a higher terminal voltage than 4.25V per cell, or a higher than rated current, there is a real possibility of fire or explosion. Further, if the battery is connected to a load above its current capability, it will overheat, even if the cells are not taken below the minimum voltage of 2.25 volts/cell.
Prior art integrated circuits which monitor the individual cell voltages and open-circuit the battery when any cell reaches maximum or minimum voltage are known and are currently marketed. And many of these devices also provide overcurrent protection. However, these existing monitoring circuits and devices have limitations when they are applied to relatively large, high-performance batteries such as lithium-ion polymer batteries.
A problem with the prior art battery protection integrated circuits (ICs) is that they measure current by measuring the voltage drop across the transistors used for power switching, with the IC being designed to switch OFF the battery at a predetermined number of millivolts. The transistors are typically MOSFETs which behave characteristically like resistors in the conductive mode with the millivolt level being determined thereby.
However, MOSFET resistance values tend to vary from sample to sample even within type; and different types vary widely. Additionally, resistance increases with the operating temperature of the MOSFET. Thus, with MOSFETs used in cut-off and control circuitry, the actual current limit will vary from battery to battery because of MOSFET variations. It will change more radically if the MOSFET type is changed, and it will decrease as the operating temperature increases. As a result, battery designers, faced with requirements to meet current drains which approach maximum for the cells, must allow for MOSFET variations (including expected temperature conditions of usage) and are therefore precluded from using the full capability of the cells.
SUMMARY OF THE INVENTION
It is an object of the invention to provide monitoring and control means for battery voltage and particularly high capacity and performance lithium batteries, to permit higher capacity usage without compromising safety.
It is a further object of the present invention to provide such monitoring and control means which is uniform and relatively temperature independent and which is effectively utilizable under conditions of charging and discharging.
Generally, the present invention comprises resistive means for accurately and consistently monitoring discharge and charging voltages and currents to predetermined parameters whereby circuit controls are accurately deployed during charging and discharging modes to provide safety cutoffs of both discharge and charge at relatively precise levels. In accordance with a preferred embodiment of the present invention there is a secondary initial charge control means which provides a recognition acknowledgement of a proper battery for charging before allowing the charging circuit to be initially activated in order to prevent potentially dangerous charging of lithium batteries with charging methods suitable for batteries of similar physical characteristics but different electrochemical properties.
The above and other objects, features and advantages of the present invention will become more evident from the following discussion and drawings in which:


REFERENCES:
patent: 4242627 (1980-12-01), Kisiel
patent: 5420493 (1995-05-01), Hargadon et al.
patent: 5432429 (1995-07-01), Armstrong, II et al.
patent: 5631537 (1997-05-01), Armstrong
patent: 5644209 (1997-07-01), Chabbert et al.
patent: 5646504 (1997-07-01), Feldstein
patent: 5861812 (1999-01-01), Mitchell et al.
patent: 5864220 (1999-01-01), Reipur et al.
patent: 5994878 (1999-11-01), Ostergaard et al.
patent: 5998974 (1999-12-01), Sudo et al.
patent: 6020722 (2000-02-01), Freiman
Texas Instruments Bulletin “bq2056/T/V”, “Low dropout Li-ion charge control IC's with autocomp charge rate compensation”, pp. 1-12, Oct. 1998.*
Texas Instruments Bulletin “BENCHMARK—Using the bq2058”, “Improving immunity to false overcurrent shutdown”, pp. 1-6, Oct. 1998.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lithium-ion and lithium polymer battery recharging does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lithium-ion and lithium polymer battery recharging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithium-ion and lithium polymer battery recharging will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2460866

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.