Lithium intercalation carbon and method for producing same

Chemistry of inorganic compounds – Carbon or compound thereof – Elemental carbon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S44500R

Reexamination Certificate

active

06207124

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an improved carbon for use in electrodes for a non-aqueous electrolyte secondary batteries and other similar energy storage devices. More particularly, it is concerned with an improvement in the electrode which includes an electrode active material being capable of reversibly intercalating and deintercalating lithium.
2. Description of the Prior Art
The present invention is drawn to intercalating carbon materials, generally. For many years manufacturers of batteries, especially high energy density lithium batteries, have searched for an electrode material which would allow them to produce safe, inexpensive, secondary cells having a high cycle life, high rate capability, and high voltage. Very early designs proposed using a material having a layered crystal structure which would allow lithium ions to migrate into and out of the interstices of the crystal lattice. The first of these materials to be successfully commercialized was a cell based on molybdenum disulfide. However, it soon became apparent that this material posed unacceptable safety problems.
Much later, carbons of various configuration were proposed as an alternative. These materials have been widely studied since. U.S. Pat. No. 5,853,918, to Tanno, et al., describes a carbon material composed of a layered structure and a turbostatic structure obtained by graphitizing a coke carbon material. U.S. Pat. No. 5,843,393 to Denton, et al., teaches using an amorphous carbon material as an electrode material in a rechargeable electrochemical cell. U.S. Pat. No. 5,451,477 to Omaru, et al., describes a non-aqueous liquid electrolyte secondary cell which includes an carbon anode comprising graphitic and non-graphitic carbons. Finally, U.S. Pat. No. 5,344,726 to Tanaka, et al., describes a carbon material comprising a crystalline core covered by an amorphous carbon layer. The carbon composite is formed by pyrolytically depositing carbon from an carbon containing carrier gas onto a carbon powder held in a closed vessel.
The use of ordered (crystalline and polycrystalline) carbons and true graphites has dominated production of lithium primary and secondary cells in recent years. However, multi-phase and disordered carbons are currently being investigated due to their observed superior reversible capacities as an active anode material comprising an inter-layer compound of a carbon material and lithium. In these inter-layer compounds, lithium enters into a space between the layers of carbon material during the charging process. Ordered-carbons are known to necessarily impose their structural order onto intercalated lithium due to the migration of the lithium into and between the carbon inter-layers as defined along the c-axis. This limits the overall electrochemical capacity of ordered carbon systems to 372 mAhr/g at standard temperatures and pressures (i.e. LiC
6
formation). (The phenomenology and energetics of this interaction are reasonably well understood.)
Disordered (or crystallographically amorphous) carbons, on the other hand, lack the obvious “templating” which occurs in graphite and ordered carbons and have been shown to achieve reversible intercalation capacities in excess of 650 mAhr/g (e.g., on the 20th cycle). These disordered carbons seems to be behaving more like a sponge, picking up lithium irrespective of the influences, or lack of, local microstructural order.
This lack of crystallinity, i.e. disorder, however, can profoundly affect the rate of lithium loss at surface defects or functionalities. In these carbons, losses can vary from between 35% to 100% of the first-cycle reversible capacity due to irreversible electrolyte reduction at the surface of the carbon, as the result of parasitic surface reactions at the above mentioned surface defects, forming a solid-electrolyte interface (SEI), usually in the form alkyl lithium compounds and lithium salts. Similarly, particle microstructure can and does influence both intercalation and deintercalation rate capability of these carbons.
In order to better understand lithium insertion, transport, storage and trapping within the lithium secondary cell, disordered, “hard,” carbons derived from polymerized methacrylonitrile (“PMAN”)-divinylbenzene, have been uniquely processed to modify the surface microstructure of a large fraction of the disordered carbon powder. In particular, a technique herein identified as “laser-induced surface reconstruction” has been used to transform the surface of a PMAN disordered carbon into a more ordered, turbostatic state (herein defined as a carbon with a high degree of local correlation between adjacent ordered planes, i.e., with respect to Lc stack height, but whose orientational correlation with other similar grouping is low for length scales on the order of 2-3 times Lc). The modification is done because, as stated above, irreversible lithium losses associated with solvent decomposition and SEI formation are generally much lower for ordered carbons, whether turbostatic or fully graphitized.
SUMMARY OF THE INVENTION
It is the object of this invention to provide an improved intercalation carbon which combines the better properties of disordered carbons, such as high capacity, with the low irreversible losses and good rate behavior of a more ordered, crystalline carbon.
It is another object of this invention to provide an electrode comprising said improved intercalation carbon having an improved rate capability.
It is another object of this invention to demonstrate the synergistic performance improvements in lithium secondary cells when a carbon composition which combines the two microstructural polymorphs of ordered (obtained via surface reconstruction) and disordered carbons is used as the anode of the cell described.
Still another object of this invention is the description of a process for modifying the surface morphology of a carbon material by using a laser to both rapidly heat and ablate some the surface of the material, and to re-deposited the ablated material as a recrystallized carbon having short range layered structure and to rapidly recrystallize or anneal more deeply buried material adjacent to the ablated zones.
Yet another object is to provide a carbon material having significantly greater unit electrochemical storage capacity, greater energy density, greater high rate capability, and better cycle life then that achieved by conventional carbons. These objects are achieved by minimizing the surface site defect density associated with amorphous carbons thereby significantly reducing parasitic surface reactions while simultaneously providing expedited lithium ion access into the bulk of the carbon material thereby augmenting the material rate capability.


REFERENCES:
patent: 5344726 (1994-09-01), Tanaka et al.
patent: 5451477 (1995-09-01), Omaru et al.
patent: 5843393 (1998-12-01), Denton et al.
patent: 5853918 (1998-12-01), Tanno

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lithium intercalation carbon and method for producing same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lithium intercalation carbon and method for producing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithium intercalation carbon and method for producing same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2545246

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.