Compositions: coating or plastic – Coating or plastic compositions – Corrosion inhibiting coating composition
Reexamination Certificate
1999-11-16
2001-11-13
Green, Anthony (Department: 1755)
Compositions: coating or plastic
Coating or plastic compositions
Corrosion inhibiting coating composition
C106S014440, C148S243000, C148S273000, C427S327000, C427S383100, C427S419100, C427S419200
Reexamination Certificate
active
06315823
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to compositions and processes for improving the protection against corrosion that is provided by a pre-existing primary coating over a metal surface, particularly a zinc, aluminum and/or zinc and/or aluminum alloy, more particularly an aluminum and/or aluminum alloy, surface.
BACKGROUND OF THE INVENTION AND RELATED ART
A process of this type is called a “sealing” process because, in some instances, the effect of the process has been theoretically ascribed to sealing pores that exist in the primary coating. The evidence for such pores is generally regarded as very strong for coatings formed by anodizing aluminum, for example, but the term “sealing” is now applied to any liquid composition that can be contact with a pre-existing coating, particularly a conversion coating, over a metal surface in order to improve the corrosion resistance of the object including the metal surface and all of its protective coating(s) and to any process that thus improves the corrosion resistance, irrespective of whether any pores in the primary coating are actually sealed or even existed at the time of treatment. Alternative names for what is herein called “sealing” in this sense include “passivating”, “final rinsing”, “post-rinsing”, and the like. A sealing treatment according to this invention is especially advantageous for surfaces that are not intended to receive any further protective organic based coating such as paint or the like, but is also useful for substrates that are to be further protected in this way.
Numerous sealing compositions for a variety of primary coatings are known in the prior art, but, particularly for aluminum substrates that are not to receive any substantial protective coating of paint or a similar material containing an organic binder, still further improvements in corrosion resistance are desirable. Accordingly, a major object of this invention is to provide sealing compositions and processes that, in combination with known primary coatings, produce improved corrosion resistance, especially in the absence of organic protective coatings. Other alternative or concurrent objects are to minimize adverse environmental impact compared with related previously used sealers, which often contained hexavalent chromium or other materials capable of readily damaging the environment, and to provide more economical treatments without diminishing the corrosion protection achieved. Other objects will be apparent from the description below.
Except in the claims and the operating examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention. Practice within the numerical limits stated is generally preferred, however. Also, throughout the description, unless expressly stated to the contrary: percent, “parts of”, and ratio values are by weight or mass; the term “polymer” includes “oligomer”, “copolymer”, “terpolymer” and the like; the description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description or of generation in situ within the composition by chemical reaction(s) noted in the specification between one or more newly added constituents and one or more constituents already present in the composition when the other constituents are added, and does not necessarily preclude unspecified chemical interactions among the constituents of a mixture once mixed; specification of constituents in ionic form additionally implies the presence of sufficient counterions to produce electrical neutrality for the composition as a whole and for any substance added to the composition; any counterions thus implicitly specified preferably are selected from among other constituents explicitly specified in ionic form, to the extent possible; otherwise such counterions may be freely selected, except for avoiding counterions that act adversely to an object of the invention; the word “mole” means “gram mole”, and the word itself and all of its grammatical variations may be used for any chemical species defined by all of the types and numbers of atoms present in it, irrespective of whether the species is ionic, neutral, unstable, hypothetical, or in fact a stable neutral substance with well defined molecules; and the terms “solution”, “soluble”, “homogeneous”, and the like are to be understood as including not only true equilibrium solutions or homogeneity but also dispersions that show no visually detectable tendency toward phase separation over a period of observation of at least 100, or preferably at least 1000, hours during which the material is mechanically undisturbed and the temperature of the material is maintained within the range of 18-25° C.
BRIEF SUMMARY OF THE INVENTION
A sealing composition according to this invention is a homogeneous liquid composition that comprises, preferably consists essentially of, or more preferably consists of, water, lithium cations, and vanadate anions, particularly decavanadate anions, which should be understood hereinafter to include not only ions with the chemical formula V
10
O
28
−6
which are present in decavanadate salts but also protonated derivatives thereof having the general formula V
10
O
(28-i)
(OH)
i
−(6-i)
, where i represents an integer from one to four, which are believed to be the predominant species present in aqueous solutions with a pH from 2 to 6. Cf. F. A. Cotton and G. Wilkinson,
Advanced Inorganic Chemistry,
4th Ed., (John Wiley & Sons, New York, 1980), p. 712. Optionally, a sealing composition according to the invention may also contain one or more of surfactants, pH adjusting components, and fluoride ions. This sealing composition, either as such or after dilution with water, is suitable for sealing any primary coating layer containing metal and oxygen atoms, especially cobalt and aluminum oxides. If immediately suitable for use, a composition according to the invention may be called a “working composition”; if preferably used only after dilution with water, a composition according to the invention may be called a “concentrate”, “concentrated composition”, or “concentrate composition”, which three terms are considered interchangeable herein. Many compositions according to the invention, of course, may be suitable for use either as such or after dilution with water and then may be called either working or concentrated compositions.
A process according to the invention comprises at a minimum a step of bringing a composition according to the invention as defined herein into contact with a primary coating layer for a sufficient time at a sufficient temperature that, after discontinuance of contact and drying, optionally with intermediate rinsing or other treatment with water of the primary coating layer after its formation but before contact with the sealing composition, additional rinsing after contact with the sealing composition, and/or additional coating treatments after drying, the object treated has measurably better corrosion resistance in at least one accelerated corrosion test or at least one type of actual use than does an otherwise identical object that is identically treated, except that deionized or at least equally well purified water is substituted for the sealing composition according to the invention used in a process according to the invention. Additional process steps, including those that are conventional in themselves, may also be part of a process according to the invention. It is preferred that none of these other steps include contacting the surfaces with any composition that contains more than, with increasing preference in the order given, 1.0, 0.35, 0.10,
Green Anthony
Harper Stephen D.
Henkel Corporation
Jaeschke Wayne C.
Wisdom, Jr. Norvell E.
LandOfFree
Lithium and vanadium containing sealing composition and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lithium and vanadium containing sealing composition and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithium and vanadium containing sealing composition and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2573121