Liquid transport device

Pipes and tubular conduits – Combined – With hose protector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C138S134000, C138S153000, C138S109000

Reexamination Certificate

active

06431217

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
This invention is directed to a liquid transport device.
II. Description of Prior Art
Maintaining the cleanliness of commercial, industrial, institutional, and public buildings is an ongoing effort, and at times, an effort which seems more like a losing battle. This is particularly true for areas such as restrooms, locker rooms, cafeterias, and food service kitchens, where the volume of traffic in the particular area may make it difficult to maintain the cleanliness of the facility.
Building maintenance staff typically clean such areas on a routine basis using traditional mop-and-bucket assemblies, in which the bucket includes a detachable mop wringer, and is positioned on caster wheels, thereby enabling a building maintenance person to move the mop bucket from place to place, typically by pushing on the mop handle. Depending on the cleanliness of the mop, a worker may be able to make a good start in cleaning a floor using the mop bucket system. However, as soon as the worker makes a first pass and wrings the mop out, the entire mop bucket system is contaminated. From that point on, each time the worker plunges the mop into the bucket and rings the mop out, both the mop and “cleaning water” become more and more dirty.
One way to attempt to solve this problem is to make frequent water and mop changes. However, this adds time to an already laborious process, and therefore, there is little worker incentive to make frequent water and mop changes. Moreover, because a slop sink, source of clean water, or custodial supply room may be far away, a worker is even less inclined to make water and mop changes.
The end result is that a dirty floor gets cleaned by pushing dirty water around with a dirty mop. At best, the surface may have the appearance of being cleaned if concentrated spots of highly visible soil have been removed or spread around. In reality, however, given the limitations of these tools, the worker still is simply pushing dirt around the floor, as evidenced by the “five-o'clock shadow” of dirt seen frequently along the surface of walls adjacent the floor, as well as the “finger painting-like streaks” left by the mop when the water on the floor dries.
The cleanliness problem may be especially severe in the restrooms of these various buildings, and in fact, the number-one building maintenance complaint is dirty restrooms. Given the frequency with which these facilities are used, as well as the tools available for cleaning restrooms, the dirty restroom complaint is not particularly surprising. Building maintenance workers typically use the mop-and-bucket system described above to clean restroom floors. And, as noted above, while this system may pick up some dirt, it tends more typically to spread dirty water around on the floor. In addition, restrooms have many surfaces, such as urinals, toilets, dividers, walls, mirrors, sinks, and countertops, which simply cannot be cleaned using the mop-and-bucket approach. The tools for cleaning these surfaces, such as brushes, sponges, spray-bottle chemical disinfectants, cloth wipes, and the like, are extremely hands-on, and therefore, are less desirable to use. And, when chemical disinfectants solutions are used, generally a worker will spray the solution onto a surface, and wipe the solution off, either right away or within a few minutes. However, a chemical disinfectant typically must remain in contact with a surface for about ten minutes in order to kill bacteria. Accordingly, little, if any, chemical disinfecting actually is being done. Because these cleaning tools and methods are relatively unpalatable, building maintenance workers tend to clean these kinds of surfaces less frequently, and when they are cleaned, they are not cleaned thoroughly. The sanitation maintenance industry offers other pieces of cleaning equipment, such as pressure washers, wet vacs, pump-up sprayers, and janitor's carts. However, because of the limitations of several of these tools, as well as their single-task focus, sanitary maintenance professionals tend to use them in actual cleaning either infrequently, or not at all.
Most pressure washers operate at a pressure of 1000 PSI and above, a pressure which is far too high for many cleaning applications. For example, if such a pressure washer were use to mechanically clean a painted wall, it would blast the paint off of the wall surface. On the other end of the pressure spectrum are pressure washers having a pressure of about 100 PSI or less. And because of the type of pump used in these low pressure sprayers, the liquid exiting the sprayer actually has a far, far lower pressure, for example, about 40 PSI. Although such a low-pressure washer may be beneficial in applying a cleaning solution, it lacks the mechanical power required to actually clean a particular surface once the solution has been applied. Because pressure washers generally include a single clean-liquid water tank or container, both cleaning chemicals and water are loaded into this same container, which may be damaging to the device, particularly if a harsh cleaning chemical passes through a mechanical component, such as a pump. Because most pressure washers do not have there own water source, an operator must use a garden-type hose, and must have ongoing access to a corresponding faucet throughout the pressure washing process. Moreover, these pressure washers generally lack a convenient on-board storage system for storing the garden hose and power cord during transport.
Conventional wet-vacs provide a user with the ability to vacuum soiled cleaning solution from a floor. However, movement of these devices from place to place can be difficult because the vac hose, wand, and various tools typically must be carried independently of the wet-vac device. Furthermore, the drain outlet on such devices is designed for draining into a custodial slop sink, thereby requiring the user to take the wet-vac to a particular location in order to drain the device.
Pump-up sprayers also are available, which-enable a sanitation maintenance worker to sprinkle a cleaning solution under low-pressure onto a particular surface. In addition, the Industry provides various mobile janitorial carts, which may include storage shelves for various supplies, as well as a frame for a trash bag.
As is apparent from the discussion of the various cleaning tools presented above, sanitary maintenance professionals have a variety of tools from which to choose. However, these tools are either inadequate to do a proper cleaning job, or are so task-specific that they become user-unfriendly, given the many aspects involved in proper sanitation maintenance. Accordingly, given the relative ineffectiveness and/or inefficiency of the various tools available, particular facilities are not cleaned as well or as frequently as they should be, and morale and job satisfaction among many building maintenance professionals are relatively low.
SUMMARY OF THE INVENTION
The present invention provides an integrated, multi-functional, cleaning center, suitable for use in any of a number of different applications in the field of sanitary maintenance. To this end, and in accordance with the principles of the invention, one aspect of the invention is a multi-functional cleaning machine. The multi-functional cleaning machine includes a water tank, a liquid delivery line flowing from the water tank and capable of delivering liquid to a surface to be cleaned, and a cleaning-liquid draw line flowing into the liquid delivery line and capable of delivering a cleaning liquid from an independent source into the draw line. The cleaning machine further includes a vac tank capable of receiving dirty cleaning solution, and a vacuum connected to the vac tank.
The cleaning-liquid draw line enables a user to tailor the cleaning machine to a specific application within seconds. In particular, the user may select a first cleaning liquid to be used in cleaning a surface by connecting the draw line to that liquid. If a second (or third, or fourth, etc.) cleaning

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liquid transport device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liquid transport device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid transport device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2880349

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.