Power plants – Pressure fluid source and motor – Pulsator
Reexamination Certificate
2000-08-15
2002-08-20
Lee, Kevin (Department: 3745)
Power plants
Pressure fluid source and motor
Pulsator
C060S592000
Reexamination Certificate
active
06434935
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a liquid reservoir, and more particularly to a liquid reservoir for a pressure medium in an hydraulic system and that includes means for compensating between atmospheric pressure and the pressure within the liquid reservoir, as well as means for compensating for changes in volume of the pressure medium.
2. Description of the Related Art
Liquid reservoirs of the type known in the art are installed in motor vehicle hydraulic systems, especially as equalizing reservoirs in, for example, braking and clutch systems. In such systems wear of the friction linings and losses of pressure medium, as well as thermal expansion coefficients of the components and of the pressure medium, cause level fluctuations of the pressure medium in the liquid reservoir. To avoid a partial vacuum in the hydraulic system, the reservoir or its sealing cover includes an opening so that the liquid reservoir is at pressure equilibrium with the atmosphere. To protect the liquid reservoir against penetration by dirt and/or water, the opening of the liquid reservoir to the atmosphere is arranged in labyrinthine form, and/or as shown, for example, in German Patent Publication DE 39 18 457 A1, a substantially gas-impermeable, elastomeric membrane, or an expansion bellows, can be installed, which because of mechanical deformability can adapt to the level of the pressure medium and avoid a partial vacuum.
Such arrangements having an opening have a drawback in that despite the labyrinth, the opening can become clogged or can allow a comparatively high. entry of dirt or water, and a closed liquid reservoir with a gas-impermeable membrane or an expansion bellows offers no possibility to lead off the pockets of outside air that are formed, for example, by leakage into the hydraulic system.
Accordingly, in German Patent Publication DE 42 01 565 A1 there is proposed a liquid reservoir that is sealed from the atmosphere by a gas-permeable but substantially liquid-impermeable membrane, for example a PTFE membrane. However, it was found, nevertheless, that in the presence of pressure fluctuations in the pressure medium, such a membrane gets wetted very rapidly, and thereby the pressure medium saturates the membrane, restricting the diffusion of gas and encouraging the escape of pressure medium.
It is therefore an object of the present invention to provide a liquid reservoir that allows gas or air diffusion when there are pressure fluctuations in the liquid reservoir, and that will avoid the development of a partial vacuum within the liquid reservoir. Moreover, the liquid reservoir should be economically constructed with few components and with long-term stability, that is, low maintenance.
SUMMARY OF THE INVENTION
The problem is solved by providing a liquid reservoir which, particularly for a pressure medium for an hydraulic system, includes a means for pressure equalization between atmospheric pressure and the reservoir pressure, as well as a means for compensating for changes in the volume of the pressure medium, whereby both means are functionally separate from each other.
In the conception of the invention, the problem is further solved by a liquid reservoir, especially for a pressure medium of an hydraulic system, that provides a means for compensating for changes in the volume of the pressure medium, and that provides an opening that is substantially gas-permeable and liquid-tight, whereby the opening provides pressure relief.
Moreover, the problem can be solved by providing in a liquid reservoir a pressure equalizing means, the gas-permeable opening of which is connected in parallel. For example, a pressure equalizing means, such as a gas-tight membrane made of an elastomer or of rubber, or in the form of a bellows made from an elastomer, rubber, or the like, can be used to compensate for level changes of the pressure medium, wherein the pressure equalizing means seals the liquid reservoir from the atmosphere in a gas-tight and a liquid-tight manner. The pressure equalizing means can be mounted in a known manner between the liquid reservoir and the cover, or at another position, whereby, especially for the purpose of preventing soiling of the liquid reservoir, the pressure equalization means can be accommodated substantially within the liquid reservoir, and can communicate with the outside atmosphere through an opening of labyrinthine design.
As the means for providing a gas-permeable opening between the interior of the reservoir and the atmosphere, that is, inside the pressure equalizing means for the pressure medium in the pressure chamber, a gas-permeable membrane, for example a PTFE membrane, can be provided, that, for reasons of stability or better adhesion to a component of the liquid reservoir, can be deposited on a base material that can be, for example, plastic or wire mesh. The opening that is closed by a membrane can be arranged on a convenient component of the liquid reservoir, but the arrangement of the opening with the membrane near the cover produces advantages, for example, contact with the pressure medium can be minimized and the risk of wetting the membrane with the pressure medium from the inside can thereby be minimized. It is especially advantageous to arrange the membrane on the pressure equalizing means. Thus, in an advantageous embodiment, the membrane can be arranged directly on the pressure side of a bellows that faces the pressure medium, whereby the bellows includes an opening in that area, which opening is sealed in a substantially liquid-tight manner by the gas-permeable membrane.
The membrane is securely joined to the component of the liquid reservoir. Known connection methods for connecting two plastics can be used advantageously, for example adhesives, cold welding, vulcanization, welding, pressing, bonding, and/or extrusion. Furthermore, a difficult-to-connect membrane can advantageously be connected with the component in a layered form (sandwich arrangement), whereby the membrane is embedded between two readily-connectable materials. Additionally, the membrane also can advantageously be affixed to a mesh that is readily connectable to the liquid reservoir.
A further advantageous arrangement involves the application of a membrane that has elastic qualities and that is at least partially permeable, either over the entire face or concentrated in a suitable portion, while being substantially liquid-tight. Suitable membranes can be, for example, porous silicon membranes the gas permeability of which is substantially higher than that of conventional elastomeric membranes such as, for example, rubber membranes, or conventional gas-tight elastomeric membranes, which by means of a suitable process exhibit micropores that are so small that wetting of the membrane by the pressure medium and possibly by outside water is substantially impossible.
A further advantageous form of the inventive concept is an arrangement that includes a level compensating device and a gas passageway in the form of a gap that can be closed as a function of the interior pressure of the liquid reservoir, for example. A gap can advantageously be formed in the liquid reservoir when the level compensating device, such as, for example, a bellows, is in its limit position as a result of a high pressure medium level, and an air pocket is formed in the liquid reservoir. The gap therefore advantageously opens at a pressure that is not detrimental to the hydraulic system as a back pressure, for example less than 700 mbar, preferably less than 450 mbar, and in special cases less than 250 mbar.
An advantageous form can therefore be a liquid reservoir, especially for an hydraulic pressure medium, that has at least a pressure-medium-receiving reservoir with a connection for a pressure-medium conduit, whereby a wall can be provided in an elastomeric membrane or in a bellows that communicates with the atmosphere and that physically separates the pressure medium from the atmosphere, and an air-tight contact is formed between the bellows wall and a su
Grabenstätter Jan
Rammhofer Thomas
Lee Kevin
LuK Lamellen und Kupplungsbau Beteiligougs KG
Mangels Alfred J.
LandOfFree
Liquid reservoir does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Liquid reservoir, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid reservoir will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2945122