Refrigeration – Cryogenic treatment of gas or gas mixture – Liquefaction
Reexamination Certificate
1999-11-01
2001-04-10
Capossela, Ronald (Department: 3744)
Refrigeration
Cryogenic treatment of gas or gas mixture
Liquefaction
C062S047100, C062S051200, C062S616000, C062S911000
Reexamination Certificate
active
06212904
ABSTRACT:
FIELD OF THE INVENTION
The present application relates to the production and storage of liquified gases at the site where at least some of the liquified gas is to be use. In particular, the present invention relates to the production and storage of liquid oxygen in an oxygen patient's residence.
BACKGROUND OF THE INVENTION
The liquification of low boiling point gases, such as air and the components of air, such as oxygen, nitrogen and argon, has been practiced for over 100 years, and the liquification of such gases on an industrial scale has been practiced since the beginning of the 20th century. Typically, commercial liquefiers are designed to produce hundreds of tons of liquid cryogens per day. Such industrial liquefiers are reliable, and are capable of producing liquified gas with relatively high energy efficiency. For consumers of liquified gas requiring relatively small quantities, small insulated containers, known as dewars, are filled with liquified gas produced by commercial facilities and transported to the consumer. Consumers of small quantities of liquified gas include hospitals, which require oxygen for delivery to patients and nitrogen for use as a refrigerant. Also, people suffering from chronic respiratory insufficiency that have been prescribed home oxygen by their physicians may have liquified oxygen delivered to their residences.
However, the cost of distributing small quantities of liquified gas is relatively high. In addition, frequent deliveries of liquified gases must be made because of losses due to the eventual warming and boil-off of liquified gas stored in containers. Therefore, there is a need for a liquefier capable of efficiently producing liquified gas at the point of use. For instance, there is a need for a liquefier capable of producing in the range of 0.4 to 5 kilograms per day of liquid oxygen for use in an oxygen patient's residence, or similar amounts of liquid nitrogen for use in physicians' offices or in labs, where it may be used for freezing skin lesions or refrigerating biological samples.
Initially, attempts to provide such a liquefier involved efforts to miniaturize large scale liquefying plants. However, due to the complexity of such systems, which are typically based on the Claude cycle or its variants, these attempts failed. Also, the extremely small mechanical components resulting from the miniaturization of such liquefiers were expensive to produce and unreliable in operation.
In recent years, cryocoolers have been intensively developed. Initially, cryocoolers were developed for the military for use in such applications as cooling infrared sensors, semiconductor chips, microwave electronics, high temperature superconductivity applications, fiber optic amplifiers, etc. The cryocoolers developed for these applications operated in a temperature range of from about 20K to 150K, and their cooling capacity ranged from less than a watt to over 100 watts. For such military applications, the cryocoolers were required to have particular features. For example, in some applications, a fast cool down is important. In other applications, low noise and vibration are desirable. Also, in certain applications, for instance those used in connection with electronic devices, close temperature control of the cooling head is important. Furthermore, certain applications were concerned with preventing frost formation on the insulating envelope and humidity ingress to the cooling components. In addition, the cryocoolers developed for the above-described military applications provided their heat input at or near the lowest temperature point of the cryocooler. For instance, the component to be cooled was typically attached to the cold point (the “cold finger”) of the cryocooler, transferring heat directly to that component, with minimal conduction losses. However, for use in small scale gas liquefiers, features such as precise temperature control and quick cool down are not necessary, and serve only to increase the cost of the device. Also, point cooling is inefficient for use in liquefying gases.
With respect to the need for relatively small but steady quantities of oxygen by patients on oxygen therapy, there have been several ways in which the needs of such patients have been met. The most common method for oxygen therapy patients to receive oxygen is through regular deliveries of oxygen produced at a commercial plant. The oxygen may be delivered as either a pressurized gas or as a liquid. When delivered as a pressurized gas, the oxygen presents a hazard because of the high pressure under which it is stored and because oxygen is highly reactive. Oxygen delivered as a liquid is subject to losses resulting from boil-off, which occurs due to the inevitable warming of the liquified gas over time. Because such losses occur even when specially insulated containers, or dewars, are used, deliveries of fresh liquid oxygen must be made on a weekly basis.
It is also known to provide devices which extract or concentrate oxygen found in the ambient air. These devices obviate the need to store a potentially hazardous material. However, these devices are typically not portable, and therefore a person on continuous oxygen therapy must continue to rely on oxygen that has been “bottled” commercially in order to leave their residences. Such reliance has been necessary because, although oxygen concentrators having a production capacity greater than the needs of oxygen patients are known, there has not been an available apparatus and method for producing and storing liquid oxygen in a residence.
For the above-stated reasons, it would be advantageous to provide a method and apparatus for producing and storing relatively small quantities of liquified gas at the location where the liquified gas is to be used. In particular, it would be advantageous to provide a method and apparatus for liquefying oxygen produced in an oxygen therapy patient's residence. In addition, it would be advantageous to provide such a method and device that is economical to operate and reliable.
SUMMARY OF THE INVENTION
In accordance with the present invention, a system for liquefying gas on a relatively small scale is provided. The disclosed system generally includes a cryocooler, a heat exchanger assembly, and an insulated subsystem. The system operates by cooling a feed gas to a point below the boiling temperature of that feed gas, and storing the resulting liquid condensate.
The cryocooler may operate according to any one of a number of well known thermodynamic cycles. The cold finger of the cryocooler is associated with the heat exchanger assembly, which receives the incoming feed gas. In a preferred embodiment, the heat exchanger assembly includes a sensible heat exchanger featuring cooling fins or other means to increase the surface area of the heat exchanger assembly cooled by the cold finger of the cryocooler. This maximizes contact with the incoming feed gas, increasing the cooling efficiency of the device. The insulated subsystem generally extends about the periphery of the heat exchanger assembly, insulating that assembly from the ambient temperature. In this way, the cold components of the device are insulated from losses to the atmosphere. The insulated subsystem further includes an insulated storage space, such as a storage dewar, for collection and storage of the liquid condensate produced in the heat exchanger assembly.
The disclosed system may, in a preferred embodiment, be adapted for providing liquified oxygen for use in an oxygen patient's residence. Accordingly, the disclosed system is particularly well adapted for producing from approximately 0.4 to 5 kilograms per day of liquid oxygen. Additionally, the described system may be provided with means for transferring liquified gas produced by the system to other devices, such as portable storage dewars. Accordingly, when used to produce liquified oxygen, the condensate so produced may be transferred to portable storage dewars, to allow the oxygen therapy patient to take a supply of oxygen with them when leavin
Arkharov Alexey M.
Arkharov Ivan A.
Kun Leslie C.
Tetreault Tommy M.
Capossela Ronald
In-x Corporation
Sheridan & Ross P.C.
LandOfFree
Liquid oxygen production does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Liquid oxygen production, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid oxygen production will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2445439