Liquid-drop discharge device having controlled pressure...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S002000

Reexamination Certificate

active

06554405

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a liquid-drop discharge device used in various machineries for processing liquid by performing discharge of the liquid, and more particularly to liquid drop discharge devices performing spraying operations in an operating environment in which the internal pressure of a reaction cell is lower than the internal pressure of a liquid storage tank or a liquid reservoir.
2. Description of the Prior Art
Ink jet discharge devices as disclosed, for instance, in Japanese Patent Unexamined Publication No. 6-40030 (1994) are conventionally known types of devices for discharging liquid in the form of minute particles used in particular fields. However, such discharge devices are used in offices or schools under relatively stationary conditions with little fluctuations in the temperature or pressure of peripheral environments when being used, and are not exposed to significant fluctuations in operating environments.
On the other hand, minute powder forms of various chemicals are being used as auxiliary products in the manufacturing of semiconductors or the like, wherein required standards in view of particle size can not be achieved by simply using mechanical crushing means. It would, therefore, be desirable to develop new manufacturing methods for new types of chemical powders. In one exemplary method for supplying raw materials in the form of minute particles to substrates in reaction cells, it is a strict requirement to supply the chemical powder particles into drying chambers in a stable manner. It is thus highly desirable to develop devices that may be used with such methods for discharging liquid as particles ranging from several hundreds of nanometers to several tens of microns in a stable and controlled manner. Fluctuations in operating conditions produce remarkable variations in the environments of discharge spaces, and it is presently the case that no device has yet been proposed with which supply liquid can be discharged as minute particles in a desirable manner in the presence of these variations in discharge space environments.
SUMMARY OF THE INVENTION
The present invention has been made with the aim of providing a liquid discharge device for discharging raw materials or the like. The liquid discharge device being arranged to continuously adjust a condition for discharging liquid to be an optimal condition even when environmental conditions of peripheral environments fluctuate or vary, and for stably discharging liquid even though the operating environment may be one in which the discharge space is prone to abrupt and accidental fluctuations in operating conditions.
For solving the above problems in the prior art, the inventors have devised a liquid-drop discharge device made up of a plurality of liquid-drop discharge units each of which include a liquid discharge nozzle for discharging liquid supplied from a liquid storage tank, a pressurizing chamber for pressuring liquid to be discharged through the nozzle, an introducing hole for supplying liquid to the pressurizing chamber from the storage tank, and a piezoelectric/electrostrictive element for causing pressurizing operations. The liquid-drop discharge device further includes a liquid discharge means in which respective liquid introducing holes of adjoining liquid-drop discharge units are connected to a common liquid supply path, and a reaction cell provided having a space into which the nozzles face for discharging liquid from the discharge units. An internal pressure of the liquid storage tank (P
1
) and an internal pressure of the reaction cell (P
3
) have the following relationship: P
1
>P
3
. With this arrangement, since the internal pressure of the reaction cell (P
3
) is a negative pressure with respect to the liquid storage tank (P
1
), drops of discharge liquid can be effectively discharged through the liquid introducing holes of the adjoining liquid-drop discharge units owing to the driving force of the positive pressure of the pressurizing chamber to thereby enable sufficient spraying of large amounts of liquid.
It should be noted that for the purpose of appropriately performing spraying operations in situations where the internal pressure of a reaction cell is lower than the internal pressure of a liquid storage tank, or that of a liquid reservoir, a known method exists wherein spraying is not directly performed from a spraying outlet of a liquid storage chamber to the reaction cell but wherein a separate pressurizing chamber is provided between the spraying outlet and the reaction cell for adjusting the internal pressure of the pressurizing chamber to be equal to that of the internal pressure of the liquid storage chamber, and then performing spraying operations from the spraying outlet to the reaction cell through the pressurizing chamber. This method, however, does not provide a liquid discharge device capable of spraying large amounts of discharge liquid.
Another aspect of the invention relates to a liquid-drop discharge device which includes a liquid storage tank, a liquid reservoir having a specified capacity that is connected to the liquid storage tank by means of a check valve, a liquid discharge means for discharging liquid from the liquid reservoir, and a reaction cell provided to have a space into which liquid is discharged from the liquid discharge means. The liquid discharge means includes a plurality of adjoining liquid-drop discharge units respectively connected to a liquid supply path communicating with the liquid reservoir. Each of the liquid-drop discharge units includes a liquid discharge nozzle facing the reaction cell to discharge liquid from the discharge units, a pressurizing chamber for pressurizing liquid to be discharged through the nozzle into the reaction cell, an introducing hole for supplying liquid from the liquid supply path to the pressurizing chamber, and a piezoelectric/electrostrictive element for causing pressurizing operations. A differential regulating tube is provided between the liquid reservoir and the reaction cell to connect the reservoir and reaction cell to one another, and maintains a specified relationship between an internal pressure of the liquid reservoir and an internal pressure of the reaction cell. The differential regulating tube is controlled such that the above-discussed internal pressures satisfy the following relationship: P
1
≧P
2
≧P
3
; wherein P
1
, P
2
and P
3
respectively represent an internal pressure of the liquid storage tank, the internal pressure of the liquid reservoir, and the internal pressure of the reaction cell. With this arrangement, it is possible to prevent backflow of fluid from the reaction cell to the liquid reservoir or from the liquid reservoir to the liquid storage tank.
Preferably, a float reservoir is employed in the liquid reservoir and functions to maintain a liquid surface level constant for preventing backflow of liquid to the liquid storage tank. The float reservoir also maintains a pressure at which liquid is supplied to the liquid-drop units to be constant. It is further desirable to set the internal pressure P
1
of the liquid storage tank to be at an atmospheric pressure for enabling successive supply of liquid from the storage tank.
It is further desirable to control the pressure differential existing between internal pressure P
2
of the liquid reservoir and the internal pressure P
3
of the reaction cell to be a constant pressure differential. With this constant pressure differential arrangement, it is possible to avoid cases in which adjustments of spraying amounts cannot be performed because the pressure differential is too large, which causes leakage of liquid when utilizing the pressure differential for spraying large amounts of liquid. The above-discussed arrangement is further favorable in view of stabilizing the spraying amount.
Preferably, the internal pressure P
2
of the liquid reservoir is maintained to be at a specified pressure value or to exceed the specified pressure value by using a regulating valve pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liquid-drop discharge device having controlled pressure... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liquid-drop discharge device having controlled pressure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid-drop discharge device having controlled pressure... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3049771

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.