Liquid dispenser and assembly methods therefor

Metal working – Method of mechanical manufacture – Assembling or joining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S778000, C222S321700, C222S383100

Reexamination Certificate

active

06789303

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to containers for liquids and more specifically relates to containers having dispenser subassemblies connected thereto for selectively dispensing liquids stored in the containers.
Containers having dispenser assemblies secured thereto are well known. One conventional dispensing system includes a container or bottle having and opening with a removable cap. Typically, the cap is secured over the container opening by screwing the cap onto external threads formed on a neck of a bottle. The screw cap is typically formed as a separate item that is assembled from a number of components. In addition, external threads must be formed on the neck of the bottle. This requires sophisticated molds and molding techniques be used. As a result, conventional liquid dispensers have a large number of parts and assembly of the parts is complex.
Another type of liquid dispenser includes a sprayer bottle having a sprayer housing fixed onto the neck of a fluid container. The sprayer housing generally contains a manually operated pump having a suction side and a compression side. An operating element, such as a trigger, is typically pivotally connected to the pump for operating the pump. A dip tube may extend from the suction side of the pump and into the container so that the liquid in the container may be drawn through the dip tube and into the pump during operation thereof. The trigger sprayer also includes an outlet in fluid communication with the compression side of the pump for discharging the liquid or fluid. The trigger sprayer typically includes a spring located in the pump for biasing the piston of the pump to return to a charged position at the end of a discharging pump stroke.
Most trigger sprayers are connected to containers by providing the sprayer with an internally threaded ring and forming external screw threads on the container, preferably at a neck portion of the container. As such, the trigger sprayer is assembled with the container by screwing the trigger sprayer onto the external threads of the container. The need for forming internal and/or external threads adds significant cost to the manufacture and assembly of such dispensers. Manufacturing costs are typically increased because more complicated molding techniques and molds must be used to form threads in the molded components. Assembly costs are increased because sophisticated equipment and/or additional personnel must be used to screw the trigger sprayer onto the external threads of the container.
Thus, the present invention provides a method of making a liquid dispenser that has many advantages over conventional methods. In conventional methods, the container or bottle is typically formed at a first location such as by means of blow molding, and is then fed to a filling line. The bottle typically includes a fixing means such as screw threads provided in the vincinity of the bottle opening or a neck portion thereof. A filling head which is typically assembled at another location is then screwed on to the external threads provided on the neck of the bottle. At the filling line, the bottle is filled and the cap is screwed onto the external threads. This conventional method of filling and assembling bottles requires a relatively large number of operations that are not well integrated with one another so that the assembly process is both time consuming and expensive. In addition, all of the component parts for the final assembly must be formed well before final assembly of the container which results in high inventory costs. Moreover, once the containers have been formed, the empty containers take up a relatively large amount of space during transport to a filling station.
Prior art dispensing devices of the type described above generally have a high number of parts resulting in a product that is both difficult to manufacture and assemble. As a result, both the manufacturing and the assembly of the dispenser parts are expensive and time consuming. This expense and time factor is multiplied by the wide variety of trigger sprayers and containers that are commonly produced. In addition, the various trigger sprayers are often made of different materials, thereby posing problems in handling and recycling the trigger sprayer and the container when the items are ready to be discarded. For example, most, if not all, prior art trigger sprayers employ a metal spring in the pump chamber for returning the trigger to a charged position. As a result, the metal spring must be removed from the trigger sprayer before the plastic portion of the item may be recycled.
Another problem noted with conventional dispensers is that they are ill suited for dispensing consistent doses of fluid each time they are actuated. In response to this problem, commonly assigned U.S. Pat. No. 5,730,335 discloses a precompression system for a dispensing device that prevents liquid from leaving a discharge nozzle of the dispenser at too low a pressure, which would result in insufficient atomization of the liquid with large drops of fluid or liquid being formed in the spray pattern. The precompression system includes a precompression valve moveable between a position that closes off communication between a pump chamber and a discharge nozzle and an open position in which it is spaced from a valve seat for opening communication between the pump chamber and the discharge nozzle. The precompression valve is biased toward a closed position by a spring element. The precompression valve is moved to its open position only when a predetermined pressure is attained within the pump chamber.
One known problem associated with certain precompression systems is that the valve is arranged in line with the pump chamber. Therefore, it is difficult to design this type of precompression system using injection-molding processes. Furthermore, because the valve is in line with the pump chamber of the dispenser housing, the resulting design is relatively bulky, making it difficult to incorporate the precompression feature into compact dispenser housing assemblies and making assembly of such devices complex, costly and time-consuming.
SUMMARY OF THE INVENTION
The present invention relates to various types of liquid dispensers and assembly methods for making such dispensers that overcome the problems described above.
In accordance with certain preferred embodiments of the present invention, a liquid dispenser includes a container having an opening for receiving and dispensing a liquid and a dispensing head having an outlet and a closing member that cooperates with the outlet. The closing member of the dispensing head is moveable between a first position wherein the closing member closes the container opening so that no liquid may pass from the outlet and a second position wherein the closing member is remote from the container opening so that liquid may be dispense from the outlet. In hightly preferred embodiments, at least part of the dispensing head is preformed on the container and a remaining part of the dispensing head is later assembled therewith to provide an operational liquid dispenser. In other words, at least a portion of the dispensing head is connected to the container before the remaining part of the dispensing head is assembled therewith.
The container preferably includes a shroud or neck portion integrally formed therewith. The neck is preferably provided at an opening of the container. In certain embodiments, the at least part of the dispensing head preformed on the container is provided at the neck of the container. The at least part of the dispensing head may include a retaining element, such an one or more internal grooves formed in the neck, for securing and/or holding the closing member of the remaining part of the dispensing head in the neck. The retaining element preferably allows the remaining part of the dispensing head to selectively move between a first closed position in which no liquid may be dispensed and a second open position wherein liquid may be dispensed from the container.
The remaining part of the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liquid dispenser and assembly methods therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liquid dispenser and assembly methods therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid dispenser and assembly methods therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3240023

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.