Liquid delivery container

Surgery – Means for introducing or removing material from body for... – Treating material applied to or removed from external...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S094000, C222S095000

Reexamination Certificate

active

06730066

ABSTRACT:

TECHNICAL FIELD
The present invention relates to Pressurisable containers for storing and ejecting liquid, the container comprising a) a front wall having or surrounding a cavity corresponding to the form of an open vessel, b) an opening in the front wall adapted for ejection of the liquid from the container, said opening defining a container axis, c) optionally a sealing over the opening adapted for temporary use, and d) a rear wall closing and sealing the open part of the front wall vessel to confine a space for the liquid in the container, the rear wall running at least partially perpendicular to the container axis and being displaceable or deformable for movement towards the opening to pressurize the container liquid. The invention also relates to methods for container manufacture and devices and methods for ejecting liquid from the containers.
BACKGROUND
Liquid containers designed not only to hold and store the liquid but also to deliver or expel the liquid tend to be growingly complex when the control demands on the delivery pattern increases. Whereas the complexity and expense, e.g. in pump systems, can be accepted under certain circumstances, such as in re-usable or multi-dosing devices, these conditions are not always present. It is for example often desirable to provide a single sealed container for each liquid dose to be delivered, e.g. to exactly control the dose and maintain sterility until the use moment in medical delivery applications, and under these unit dose circumstances the price restrictions becomes decisive. The design constraints may become still more severe with added requirements on delivery quality, e.g. in respect of delivery pressure, liquid speed, precise targeting, jet coherence, rapid stream rise and fall, fast delivery, small losses, precise dosing etc. High chamber pressures, e.g. to give high jet speeds or atomizing degrees, may counteract the cost aspect by requiring thick walls of special design or elaborate supports for the chamber or counteract the targeting by rupture, instability or dislocation of the opening. Jet coherence may require a precise opening channel inconsistent with minimum material and manufacturing conditions. High dosing precision requires complete chamber emptying and small losses, in turn requiring rapid pressure build up and fall, placing high demands on cavity stability and controlled collapse of the pressurizing wall. Secondary factors also need consideration. It is for example common to provide a temporary seal over the opening in order to fully seal the container before use and arrangements need to be present for rupture or removal of the seal in connection with delivery. Also, apart from the container properties as such, certain rigidity and additional structures may be needed for retaining the container in a delivery device fixture or seat. In order to avoid handling of individual unit dose containers it is also desirable to provide units of multiple connected containers for sequential firing in a dispenser device, which may require additional structural rigidity and features for feeding and stabilizing the individual containers in a device firing position. Manufacturing demands include both efficient production of the container parts as well as rational filling and sealing of the containers under high purity and even sterile conditions.
Prior art suggestions have met the abovesaid requirements only to a limited extent. The U.S. Pat. No. 4,090,642 describes a tape having multiple pockets for a flowable material and represents liquid dispensing with low delivery and control requirements since the flowable material is only to be squeezed out on the tape surface for contact application to the skin. The U.S. Pat. No. 5,497,763 specification relates to a system including a similar multiple dose tape for atomizing liquid to be inhaled. The delivery requirements are still low as atomization takes place with a separate vibrator and the demands on the tape reduce to liquid outflow through a porous membrane. The GB 2255918 specification similarly relates to droplet formation for inhalation purposes but liquid atomization here takes place by forcing the liquid through narrow container openings. In spite of the higher demands the proposed containers are separate collapsible containers or blister type sheets with multiple containers, requiring heavy support in the dispensing device when the pressure is applied to a dome shaped rear wall, the collapse of which cannot be fully controlled. It should also be noted that for the purposes described no liquid targeting is needed and no liquid stream formation since in connection with inhalation a mist of droplets is passively drawn into the lungs by the patient, even allowing redirection of the stream. The same applies for powder inhalers, as exemplified by WO 90/13328, GB 2242134, DE 19500726, WO 97/04827, U.S. Pat. No. 4,811,731, U.S. Pat. No. 5,207,217, U.S. Pat. No. 5,415,162, EP 469814, EP 129985 and U.S. Pat. No. 4,627,432, additionally different in that no atomization at all takes place and no discharge from nozzle type openings. Accordingly such demands are not considered and no container design suitable for such purposes is proposed. The WO 96/00050 and EP 224352 specifications do relate to the generation of a stream of droplets, actively shot and targeted towards an eye and able to traverse an air gap by own inertia. Typically, however, the dispenser arrangements required are elaborate and no suggestions are given for individual unit dose containers with integral delivery nozzles. The WO 96/06581 and 97/23177 specifications suggest such unit dose containers for similar eye treatment purposes. While meritorious in many respects the container designs proposed are similar to those already known and discussed, i.e. either elaborate separate containers or flexible bands with multiple blister type pockets having bulb type walls to be collapsed.
Accordingly there remains a need for improved integrated unit dose sealed container systems suitable both for liquid storage and liquid delivery under high control and quality demands.
SUMMARY OF INVENTION
A main object of the present invention is to avoid the abovesaid disadvantages of hitherto used container systems. A more specific object is to offer a unit dose sealed container system suitable both for liquid storage and liquid delivery under high control and quality demands. A further object is to provide such a system meeting high demands in respect of liquid speed, precise targeting, jet coherence, rapid stream rise and fall, fast delivery, small losses, precise dosing and/or complete container emptying. Another object is to offer a system allowing high chamber pressures with maintained container integrity and without rupture, instability or dislocation of the opening. Still another object is to offer a system allowing controlled collapse of the pressurizing wall. Yet another object is to offer a system useful for varying degrees of liquid stream momentum, e.g. characterized as low, moderate and high, allowing all from smooth application to penetrating strength. Another object is to offer system containers of low cost in material, component manufacture and filling. Still another object is to offer containers of high rigidity and stability. Yet another object is to provide such container designs suitable for multiple container units useful for sequential delivery of doses. Another object is to provide containers facilitating dispenser device design and requiring limited support at delivery. Another object is to provide a system easy to handle and convenient to operate for the end user.
These objects are reached with the characteristics set forth in the appended patent claims.
By use of a container sealing, collapsible, backing rear wall which before collapse have an overall planar or single-curved shape several precision related objects are reached. For each front wall overall shape the rear wall will have a minimum surface, giving volume and shape stability before collapse and a foreseeable and controlled collapse during pressuriz

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liquid delivery container does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liquid delivery container, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid delivery container will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252874

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.