Liquid crystal display device

Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S206000, C349S054000

Reexamination Certificate

active

06340963

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to liquid crystal display devices of the active matrix type; and, more particularly, the invention relates to a liquid crystal display device having switching elements formed of semiconductor devices, such as thin-film transistors, having an improved on-screen display image quality which is obtained by correcting such characteristic dispersions as deviations of threshold voltage values of the switching elements and/or fluctuations of the threshold value of the thin-film transistors.
In recent years, active-matrix liquid crystal display devices which use thin-film transistors as its switching elements have been widely employed for use as monitor units in various types in image visualization equipment and/or information processing apparatus.
A typical liquid crystal display device of this type is arranged to include an active matrix substrate with a plurality of (multiple) switching elements (thin-film transistors) for pixel selection formed on an electrically insulating or dielectric substrate and a color filter substrate having thereon a common electrode and a color filter, which substrates are bonded together to define therebetween a thin gap or space in which a layer of liquid crystals is sealed, to thereby provide a liquid crystal panel with requisite driver circuitry assembled together.
In recent years, as visual display monitors have been increasing in screen size and precision, it is becoming more and more difficult to make uniform the characteristics of those thin-film transistors formed on an active-matrix substrate. Another serious problem associated with currently available liquid crystal display architectures is the presence of risks of destruction and characteristic degradation of thin-film transistors due to the effects of static electricity during the manufacture of the liquid crystal display devices.
One typical prior known approach to making the thin-film transistor threshold value even is to apply thermal processing to finally manufactured thin-film transistors. In addition, one prior art electrostatic remedy is to provide one or more “special” leads for electrostatic protection at selected portions of a substrate to be cut away when the intended liquid crystal panel is completed, the electrostatic protective leads being connected to associative leads of thin-film transistors.
SUMMARY OF THE INVENTION
Unfortunately, the conventional approaches suffer from limitations for making the thin-film transistor threshold value even during thermal processing in the manufacture of active-matrix substrates, which can result in the presence of a non-uniformity or unevenness in the characteristics of respective active-matrix substrates. Such a transistor characteristic deviation leads to the occurrence of undesired brightness irregularities due to variations in voltage potentials being applied to a layer of the liquid crystals.
It is therefore a primary object of the present invention to provide a new and improved liquid crystal display device which is capable of avoiding the problems now faced in the prior art and which is also capable of increasing the manufacturing yield and reliability thereof.
To attain the foregoing object, the present invention provides a liquid crystal display device which is specifically arranged so that a plurality of parallel elongate pixel signal electrode leads formed on an active-matrix substrate are subdivided into two groups of odd-numbered and even-numbered leads in the order of the layout sequence as counted from one side edge of such a substrate, a first common wiring line (electrostatic protective common lead) is provided for protection of the group of odd-numbered pixel signal electrode leads against externally attendant static electricity, a second common wiring line (electrostatic protective common lead) is provided for protection of the remaining group of even-numbered pixel signal electrode leads against static electricity, and the first electrostatic protective common lead and the odd-numbered pixel signal electrode lead group, on one hand, and the second electrostatic protective common lead and the even-numbered pixel signal electrode lead group, on the other hand, are connected together via two electrostatic protective elements (mutually inversely coupled nonlinear elements or alternatively a resistive element), respectively.
The first and second electrostatic protective common leads are provided such that they are electrically independent of each other on the active enable successful defect inspection and threshold value adjustment of respective thin-film transistors of pixel signal electrode leads connected to these electrostatic protective common leads, while, in the state wherein a color filter substrate has been bonded, causing them be electrically connected together via a conductive member (conductive paste or the like) for use in electrically connecting the active-matrix substrate and a common electrode of the color filter substrate.
In addition, a third electrostatic protective common lead is provided at a location outside of the first and second electrostatic protective common leads in such a manner that the first and second plus third electrostatic protective common leads are, electrically independent of one another on the active-matrix substrate while, in the state that the color filter substrate has been bonded, letting these leads be electrically connected together via a conductive member for electrical connection between the active-matrix substrate and the common electrode of the color filter substrate.
Some typical arrangements unique to the instant invention are as follows.
(1) A liquid crystal display device comprises:
a color filter substrate having a common electrode formed on a dielectric substrate and color filters of multiple colors;
an active-matrix substrate disposed as to oppose the color filter substrate with a specified gap or space defined therebetween in which a layer of liquid crystals is sealed, thereby constituting a liquid crystal panel, the active-matrix substrate including a plurality of scan electrode leads formed on a dielectric substrate, a plurality of image signal electrode leads formed to cross over or “intersect” the scan electrode leads, a plurality of thin-film transistors which are two-dimensionally laid out to form an effective display area by connection to the scan electrode leads and image signal electrode leads, pixel electrodes connected to respective ones of the pixel electrodes, an additive capacitive element connected to each of the pixel electrodes, a common electrode lead terminal for connection to the common electrode formed on the color filter substrate, scan electrode lead terminals which extend from the scan electrode leads and image signal electrode leads up to one side outside of the effective display area, along with image signal electrode lead terminals which extend to the other side neighboring upon this one side, and a dielectric protective film coated so as to cover at least the thin-film transistors;
driver circuitry, including a scan electrode driver circuit and image signal electrode drive circuit, for supplying the scan electrode lead terminals and image signal electrode lead terminals with more than one signal voltage for on-screen image display;
first and second electrostatic protective leads extending along (in parallel to) one side with the pixel signal electrode lead terminals formed thereat and being electrically connected to respective ones of the first and second electrically divided common electrode lead terminals as formed along one opposite side, with the effective display area lying therebetween; and
first and second electrostatic protective elements for respectively connecting between the first and second electrostatic protective leads on one hand and the oddnumbered and even-numbered ones of the image signal electrode leads on the other hand, wherein
the first and second common electrode lead terminals are electrically connected together via a conductive member for electrical con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liquid crystal display device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liquid crystal display device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid crystal display device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2832700

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.