Liquid cooling system and retrofit for horizontally opposed...

Internal-combustion engines – Cooling – With jacketed head and/or cylinder

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S041470, C123S041790, C123S055200

Reexamination Certificate

active

06408803

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to cooling systems for internal combustion engines and more particularly is directed to a liquid cooling system for and to the conversion of such engines from air cooling to liquid cooling.
2. State of the Prior Art
Many light aircraft in current service are powered by horizontally opposed piston engines. This type of engine is characterized by multiple pairs of piston cyclinders, each pair being mounted to opposite sides of a common crankcase block with all of the cylinders lying in a common horizontal plane. This type of engine is most notably exemplified by the Lycoming series of aircraft engines, and also certain engines made by Continental. The Lycoming engines are made in four cylinder configurations and to a lesser extent in six and even eight cylinder configurations, and are in widespread use in the civil aviation and light aircraft community. These engines have gained wide acceptance and have remained essentially unchanged since about 1955. For purposes of this disclosure reference is made primarily to Lycoming engines because these are the most prominent example of the type of engine to which this invention is directed. It should be understood, however, that the liquid cooling system and conversion according to this invention is not limited to any particular make or brand of engine, nor for that matter, to aircraft engines. Aircraft engines have discrete cylinders each individually bolted to a common crankcase block. This is distinguished from an in-block cylinder engine where the cylinders are contained in a common engine block.
The Lycoming engine in its original factory configuration is cooled by an air stream produced by the turning propeller driven by the engine. Air intakes defined by a cowling arrangement around the engine admit propeller driven air from the atmosphere into the engine compartment and over the piston cylinders on either side of the engine. The air heated through contact with the engine is discharged to the atmosphere through vent openings in the fuselage. Each piston cylinder includes a cylinder sleeve which contains a reciprocating piston and a cylinder head which is assembled to the outer end of the cylinder. The cylinder head closes the top or outside end of the cylinder and also carries the intake and exhaust ports and valves which control the flow of the air/fuel mixture into the cylinder and the hot exhaust gases out of the cylinder. The cylinder head also carries the spark plug or plugs which ignite the air/fuel mixture. A system of push rods external to the cylinders and driven by a crank turning in the engine block actuates the intake and exhaust valves on each cylinder through a rocker assembly in the cylinder head in time with an electrical ignition system which fires the spark plugs. The exterior surfaces of the cylinder and the cylinder head carry a series of annular radiator fins which greatly increase the metal surface exposed to the air stream and thereby enhance the transfer of heat from the cylinder to the air stream.
The Lycoming engine also has an accessory pad on the crankcase block with an output drive shaft which conventionally provides a power take-off for various accessories such as an engine governor or a propeller pitch drive.
Air cooling of aircraft engines has proved popular because it eliminates the weight and reliability issues of the radiator, pump and hoses of a liquid cooling system. On the other hand, air cooling suffers from a number of disadvantages as well. Firstly, air flow through the engine compartment and against the cylinders introduces significant drag, Secondly, cooling of the various cylinders is uneven, some receiving significantly better airflow than others depending of the position of each cylinder and the cowling configuration in the particular fuselage. Thirdly, air cooled Lycoming and similar aircraft engines operate at elevated temperatures, typically in the range of 400-500° F. and, although the engines are rated at 2000 hours before overhaul is needed, in actuality these engines have substantially shorter service lives. The conventional air cooled cylinder heads have a very large temperature differential across the head, between the intake valve and exhaust valve sides of the head. The intake side is cooled by the relatively cold air/fuel mixture flowing into the cylinder, while the hot combustion exhaust gases typically have a temperature of about 1500° F. The result is a differential of some 200° F. across the cylinder head, which often leads to cracking of the head within some 1100 hours of engine operation. This temperature differential can be reduced to about 25° F. by water cooling the cylinder head. Shock cooling of the cylinders may occur in a nose down descent with the engine running at idle, where rapid air flow can cause a rapid drop of 200° F. in cylinder head temperature while little heat is generated during idle operation, causing warpage of both the cylinders and the cylinder heads as one side shrinks relative to the other, the cylinders go out of round. Conversely, shock heating of 200° F. to as much as 400° F. of the cylinder head can happen during engine run-up prior to takeoff while the aircraft is stationary but developing high r.p.m. with little air flow over the engine. At temperatures of about 320° F. and above the aluminum alloy of the cylinder head looses T6 hardness and becomes more susceptible to cracking. Critical failures involving cracks developing in the cylinder heads and sticking of exhaust valve stems become more likely under such circumstances. Air cooling cannot sufficiently cool the exhaust valve area leading to carbonization of valve stem lubrication oil. These carbon deposits eventually lead to valve sticking. Also, repeatedly raising and lowering the aluminum alloy temperature induces work hardening of the metal and is also a factor leading to cracking of the cylinder heads.
Liquid or water cooling, on the other hand, is conducive to lower engine operating temperatures and more even cooling of all engine cylinders with lower air cooling drag. An estimated ten percent increase in air speed is obtainable by converting a given air cooled engine to liquid cooling, while at the same time reducing engine operating temperature to approximately 190° F. In turn, reduced engine temperatures permit an increase in engine compression ratio which translates into higher engine power output. Also, lower engine temperatures allows the engine to be run at lean fuel mix at low altitudes, even at sea level, without detonation and at higher power output than is possible with air cooling of the engine. A rich fuel mix, e.g. 19 gallons of fuel per hour (full rich), also operates to cool the engine, whereas a lean fuel mix such as 10 gallons per hour (a typical cruise lean mix) is more susceptible to detonation due to high engine temperature at oxygen rich low altitudes. Liquid cooling of the engine greatly reduces the chances of such detonation because of markedly lower combustion chamber surface temoertures.
A large number of light aircraft are in service with air cooled horizontally opposed piston engines which could benefit from conversion to liquid cooling. There is also a need for robust yet easy to install power plants in the experimental aviation, which presently relies on small, low power air cooled engines or, for higher power applications, on converted automobile engines which tend to be too heavy and run too fast for aircraft use. Heretofore, however, no conversion from air cooling to liquid cooling has received certification by the FAA because of the cost and difficulty of the certification process.
Many attempts have been made in the past to convert air cooled piston engines of various types to liquid cooling. However, because of the all important need for dependability in aircraft engines these attempted conversions have not found acceptance in the aviation industry, and only engines designed from the ground up for liquid cooling have found use in the aviation field.
Exempl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liquid cooling system and retrofit for horizontally opposed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liquid cooling system and retrofit for horizontally opposed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid cooling system and retrofit for horizontally opposed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2949921

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.