Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of...
Reexamination Certificate
2000-04-12
2003-06-24
Ketter, James (Department: 1636)
Chemistry: molecular biology and microbiology
Animal cell, per se ; composition thereof; process of...
C536S023100, C536S023200, C536S023500, C536S024200, C435S320100, C424S093700
Reexamination Certificate
active
06582957
ABSTRACT:
1. INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides that encode proteins that share sequence similarity with lipoxygenases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that lack the disclosed genes or over-express the disclosed genes, or antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, or the treatment of physiological or behavioral disorders.
2. BACKGROUND OF THE INVENTION
Lipoxygenases are enzymes that mediate the oxidation of lipid substrates. As such, lipoxygenases are involved in the synthesis of leukotrienes. Leukotrienes influence a variety of biological processes, and can serve as, inter alia, potent chemotactic agents, and mediators of inflammation, smooth muscle contraction, etc. Accordingly, lipoxygenases represent a key target for the regulation of a variety of biological pathways and conditions.
3. SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human lipoxygenase proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal and plant lipoxygenase proteins. As such, the novel genes represent a new class of lipoxygenase proteins with a range of homologues and orthologs that transcend a broad range of phyla and species.
The invention comprises (a) polypeptides with SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28; (b) homologues and allelic variants of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28; (c) fragments of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28 of any size, for example, from 4 amino acids to less than the full-length of a polypeptide of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or 28 and any number between; (d) fragments of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28 that correspond to a functional domain (for example, a catalytic domain, a signal sequence, a ligand binding domain, a regulatory domain, etc.); (e) fusion proteins comprising a polypeptide sequence of any one of (a) through (d); (f) mutant polypeptides (including engineered and naturally occurring mutants) comprising a polypeptide sequence of any one of (a) through (d), including, but not limited to, deletion mutants, insertion mutants, substitution mutants, and mutant polypeptides in which all or a part of at least one of the domains is deleted or altered (e.g., a mutant of the active site with altered substrate specificity).
The invention further comprises (g) polynucleotides with SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 29; (h) polynucleotides encoding any one of the polypeptides of the invention including, but not limited to, polypeptides specifically described in (a) through (f) above; (i) polynucleotides capable of hybridizing to a second polynucleotide that is complementary to a polynucleotide described in (g) and/or (h) above under conditions of low, medium, or high stringency; (j) oligonucleotides corresponding to a segment of a polynucleotide described in (g) through (i) above and such oligonucleotides having any size from 2 nucleotides through less than the full-length polynucleotide and any length inbetween.
In certain embodiments, the novel human nucleic acid sequences described herein, encode proteins/open reading frames (ORFs) of 711, 489, 556, 334, 615, 460, 291, 69, 139, 195, 110, 867, 645, and 771 amino acids in length (see SEQ ID NOS:2, 4, 6, 8,10, 12, 14, 16, 18, 20, 22, 24, 26, and 28 respectively).
The invention further comprises antibodies to any one of the polypeptides or polynucleotides of the invention. The invention also comprises host cells that are engineered to contain and/or express any one of the polynucleotides and/or polypeptides of the invention.
The invention also comprises agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHP, and antibodies. The invention further comprises nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme oligonucleotides and/or polynucleotides, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP genes (e.g., expression constructs that place the described gene under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or “knock-outs” (which can be conditional) that do not express functional NHP.
Further, the present invention also relates to methods for identifying compounds that modulate, i.e., act as agonists or antagonists of, NHP expression and/or NHP product activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.
4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES
The Sequence Listing provides the sequences of 14 lipoxygenase-like ORFs that are encoded by the described NHP polynucleotides (SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 29) and the amino acid sequences (SEQ ID NOS:2, 4, 6, 5 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28) encoded thereby.
5. DETAILED DESCRIPTION OF THE INVENTION
Lipoxygenases oxidize, or oxygenate, lipids to produce leukotrienes. Depending on the leukotriene synthesized, a wide variety of biological functions can be affected. Typically, leukotrienes will bind cognate receptors an trigger a biological effect (such as, for example, signal transduction). Interfering with lipoxygenase activity ultimately effects leukotriene production and downstream leukotriene-mediated processes. Alternatively, enhancing lipoxygenase activity in vivo, can boost the effects/activity levels the corresponding biological processes. Various lipoxygenase activities can be found in a variety of cells and tissues in both animals and plants. Three predominant types of lipoxygenases include the 5-, 12-, and 15-lipoxygenases, and each type of lipoxygenase can have additional forms depending upon the tissues or cells in which they are expressed.
The 5-, 12-, and 15-lipoxygenases, and the leukotrienes they produce, have been implicated with a variety of diseases and disorders. Given that leukotrienes can modulate inflammatory reactions, they have been associated with a spectrum of mammalian diseases including, but not limited to, asthma, eye diseases, anaphylaxis, lung disease, hematological disorders, infectious diseases, granulomatosis, abscess, pacreatitis, prostatitis, hepatitis, atherosclerosis, heart disease, graft rejection, thrombosis, restenosis, ulcers, kidney disease, hypertension, dermatoses, cramping, autoimmune disorders (lupus, scleroderma, Crohn's disease, rheumatoid arthritis, etc.), granulomatosis, hyperproliferative diseases, cancer, nausea, headache, metastases, inflammatory bowel disorder, allergy, cancer, arthritis, eczema, melanoma, erythema, acne, psoriasis, shingles, infectious disease, and diabetes. Accordingly, one embodiment of the present invention are processes for identifying compounds useful for the treatment of one or more of the above diseases and disorders that include the use of one or more of the described lipoxygenase-like genes, proteins, or a novel portion thereof.
Given the biological importance of lipoxygenases, the genes encoding such proteins (and the proteins encoded thereby as well as inhibitors thereof) have been
Friedrich Glenn
Nehls Michael
Sands Arthur T.
Turner, Jr. C. Alexander
Zambrowicz Brian
Ketter James
Lexicon Genetics Incorporated
Sullivan Daniel
LandOfFree
Lipoxygenase proteins and polynucleotides encoding the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lipoxygenase proteins and polynucleotides encoding the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lipoxygenase proteins and polynucleotides encoding the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3137501