Liposome compositions and methods for the treatment of...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Liposomes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S402200

Reexamination Certificate

active

06312719

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention provides pharmaceutical compositions and methods useful for the treatment of atherosclerosis. More particularly, the compositions generally comprise liposomes having an average diameter of about 100-150 nanometers and a pharmaceutically acceptable carrier. The methods generally comprise administering such compositions.
Atherosclerosis is the leading cause of death in the United States. Atherosclerosis is the formation of plaques in arterial walls that can occlude the vessel lumen and obstruct blood flow through the vessel. Morbidity and mortality generally occur through end organ damage and organ dysfunction resulting from ischemia. The most common forms of ischemic end organ damage are myocardial infarction and cerebrovascular accidents. Disability or death often result from these vascular events. Even atherosclerosis-related ischemia that does not permanently injure myocardium is responsible for significant morbidity in the form of angina pectoris and congestive heart failure. Other organs, such as the kidneys, the intestines, and the spinal cord, may also be injured by atherosclerotic occlusions. Further, in diseases such as aortic aneurysms, atherosclerotic arteries may cause clinical symptoms independent of end organ dysfunction.
Arteriosclerotic lesions are plaques that form by accumulation of cholesterol, cholesterol esters, and phospholipids and proliferation of smooth muscle cells in the intima of major arteries. Lipid contributes a major portion of the plaque volume (generally 30-65% dry weight). Small,
Arteriosclerosis,
8:103-129 (1988). In fact, the risk of developing arteriosclerosis is directly related to the concentration of certain forms of plasma cholesterol.
Lipids, including cholesterol, are generally insoluble in aqueous plasma. Plasma lipids are carried by soluble lipoprotein complexes. These lipoprotein complexes consist of an inner core of non-polar lipids (cholesteryl esters and triglycerides) and an surface layer of hydrophilic proteins and polar lipids (phospholipids and non-esterified cholesterol). Different proteins are present in the surface coat of different lipoprotein complexes (lipoproteins). The different lipoproteins perform different functions in lipid metabolism.
Five classes of lipoproteins are known. Some lipoproteins carry triglycerides and cholesterol from the liver to peripheral tissues while others transport lipids to the liver. Cholesterol may be metabolized in the liver to bile salts that are excreted, thus lowering total body cholesterol. Two lipoproteins, low density lipoproteins (LDL) and high density lipoproteins (HDL), have a high degree of association with the development of atherosclerosis. LDL has a high cholesterol concentration, delivers lipids to cells of peripheral tissues, and is associated with a high risk of atherosclerosis. HDL also has a relatively high cholesterol concentration, but carries lipids to the liver for metabolism into bile salts and is associated with decreasing the risk of developing atherosclerosis.
Cholesterol metabolism and homeostasis is the result of a complex equilibrium between free sterol in the cell and in plasma. Phillips et al.,
Biochim. Biophys. Acta,
906:223-276 (1987). Delivery of cholesterol to cells occurs via the receptor-mediated LDL pathway and by passive exchange of sterol between plasma membranes and lipoproteins. Only tissues that produce steroid hormones and bile acids can metabolize cholesterol. In order to prevent accumulation of excess free sterol in remaining peripheral tissues there is a reverse transport of cholesterol from plasma membranes into HDL and lipoprotein-like particles. HDL transports excess cholesterol to the liver where it can either be processed into bile salts for excretion or incorporated into very low density lipoproteins (VLDL) to re-enter the lipoprotein pool.
The passive exchange of cholesterol between cells and lipoproteins occurs via the diffusion of sterol molecules across the aqueous space. Phillips et al., supra, and Schroeder et al.,
Exp. Biol. Med.,
196:235-252 (1991). Net cellular efflux occurs if the chemical potential of free cholesterol is lower in the plasma than in the cells so that sterol leaves the membrane following its activity gradient. Under these conditions, it has been shown that cholesterol-ester-loaded cells, which are morphologically characteristic of early atherosclerotic lesions, not only lose cholesterol, but promote ester hydrolysis, resulting in the reduction of intracellular deposits of this lipid. Small,
Arteriosclerosis,
8:103-129 (1988). Moreover as mentioned above, there is epidemiological evidence that conditions which might be expected to enhance reverse cholesterol transport (low plasma cholesterol concentrations, or increased HDL concentrations) are correlated with reduced risk of premature atherosclerosis and may give rise to plaque regression.
Characteristically, plaques are associated with ulceration of the vessel intima. The lipid-containing plaques grow in the ulcerations projecting friable masses into the arterial lumen. The plaques may also injure and weaken the smooth muscle media of the vessel. As plaque formation progresses, more central regions of the plaques are shielded from the circulation. Extensive plaque formation also cause concentric constriction of the vessel at the plaque site.
Presently, the most effective treatment of atherosclerosis is prevention. There is evidence that the progression and accumulation of lipids in lesions can be halted when plasma LDL concentrations are kept to near normal levels. Reynolds,
Circulation,
79:1146-1148 (1989). Current preventive management of atherosclerotic disease has focused on the use of drugs in conjunction with dietary restrictions to regulate plasma cholesterol levels. Moreover, antioxidant therapies which suppress the formation and uptake of modified LDL particles by the cells of the arterial wall are also proving beneficial. Chisolm,
Clin. Cardiol.,
14:25-30 (1991). However, while hypocholesterolemic drugs induce favorable plasma cholesterol changes which appear to slow the progression of atherosclerosis, they do not generally induce conditions that promote the efflux and removal of atheroma cholesterol. Clearly, in order to achieve significant regression of atheroma and lessen lumen obstruction, these space occupying lipids must be mobilized. Present evidence suggests that processes which stimulate the efflux of extrahepatic cell cholesterol and transport it to the liver for excretion, reverse cholesterol transport (RCT), are important events in the prevention of atherosclerosis. Gwynne,
Clin. Cardiol.,
14:17-24 (1991).
Current therapeutic modalities of arteriosclerosis are generally divided into surgical and medical management. Surgical therapy may entail vascular graft procedures to bypass regions of occlusion (e.g., coronary artery bypass grafting), removal of occluding plaques from the arterial wall (e.g., carotid endarterectomy), or percutaneously cracking the plaques (e.g., balloon angioplasty). Surgical therapies carry significant risk and only treat isolated lesions. Atherosclerotic plaques downstream from the treated lesion may continue to obstruct blood flow. Surgical therapies also do not limit the progression of atherosclerosis and are associated with the late complication of restenosis.
Medical therapy is directed to reducing other risk factors related to vascular disease (e.g., smoking, diabetes, and hypertension) and lowering forms of serum cholesterol that are associated with the development of atherosclerosis as described above. While medical therapies may slow the progression of plaque formation, plaque regression is relatively rare. Therefore, symptomatic atherosclerosis often requires both surgical and medical treatment.
Paradoxically, intravenous infusion of phospholipids and liposomes has been shown to produce regression of atherosclerotic plaques although serum lipid levels are transiently elevated. Williams et al.,
Perspect. Biol. Med.,
27:417-431 (1984). In some

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Liposome compositions and methods for the treatment of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Liposome compositions and methods for the treatment of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liposome compositions and methods for the treatment of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2591804

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.