Lipoproteins as nucleic acid vectors

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S455000, C435S458000, C424S093200

Reexamination Certificate

active

06635623

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to materials and methods for the in vivo transport and delivery of nucleic acids. More particularly, it concerns the use of lipoproteins, including but not limited to, low density lipoproteins (“LDL”), and/or apolipoproteins for the in vivo transport of nucleic acids. In addition, the present invention relates to the use of lipoproteins in the early detection of cancer and/or metastatic cancer and/or arteriosclerosis.
2. Description of Related Art
The ultimate curative method for any genetic disorder, whether the disorder is inherited or results from a mutation, depends on an effective mode of replacing or augmenting non-functional gene(s). This process is now termed gene or genetic therapy. There are two important aspects to genetic therapy, the gene delivery system/vehicle and the gene control/expression program. Ideally, a replacement gene should become resident in the genome of the target cells/organism and be transferable to subsequent generations of cells and progeny, i.e., the change is incorporated into the germ cells or reproductive cells, the sperm and ovary. Although there have been several significant breakthroughs in this field, this area of biotechnology is still in its early development phase. The first step in any approach to gene replacement is the delivery of the specific gene (nucleic acid) to the cells.
Many techniques have been and are being developed to deliver and express genes in cells and specific tissues in mammals in vivo. Several general, non-specific methods for delivering genes have been reported involving aerosol nucleic acid delivery to cells (Stribling et al., 1992); calcium phosphate precipitation, using a steep change in ionic strength (Wigler et al., 1979); DEAE-dextran (Sompayrac et al., 1981); electroporation, forcing the nucleic acid into the cell by using an electric field or current (Neumann et al., 1982); microinjection, physically injecting the nucleic acid into a cell (Benvensty et al., 1986; Wolff et al., 1990); and polycationic molecules such as polylysine polypeptides (Curiel et al., 1992) and cationic lipids (Lee et al., 1996).
Liposomes, vesicles composed of synthetic or non-natural lipids such as long-chain fatty adds, can be used to carry the nucleic acid into the cell cytoplasm non-specifically (Felgner et al., 1987). A recent invention describes the delivery of a self-initiating and self-sustaining gene expression system which contains an RNA polymerase prebound to a DNA molecule using the aforementioned nucleotide delivery systems (U.S. Pat. No. 5,591,601).
Viral vectors in which specific nucleic acid sequences are incorporated into a neutralized or inactivated virus can use their viral entry mechanism to gain entry to the cell cytoplasm via specific cellular receptors to deliver nucleic acids (Schimotohono et al., 1981). The use of specific cellular receptors is apparently a more specific method for delivering genes. In this approach, the nucleic acid is bound either freely, through charge association, or alternatively it is chemically and non-reversibly conjugated to proteins with specific receptor proteins on the membrane of target cells for receptor-mediated uptake (Wu et al., 1988, Wu et al., 1989).
Techniques such as calcium phosphate precipitation, electroporation or DEAE-dextran transfection are not suitable for in vivo applications. Bombarding cells with nucleic acids under high pressure is a technique which has very limited applications in that it can only be applied topically and only a small number of cells can be targeted. Microinjection of nucleic acids into cells is mainly performed in vitro and requires actively dividing cells.
Gene delivery systems that use the viral entry mechanism of recombinant viral vectors have major disadvantages. Systems that utilize replication-defective adenoviral vectors can infect a wide variety of eukaryotic cell types including quiescent somatic cells utilizing the viral entry mechanism. However, adenoviral vector-based delivery systems are only successful in transient gene expression and repeated administration of the viral vector results in a strong immunological response of the host. In addition, the host will experience an adenoviral infection and can experience its symptoms if the recombinant vector undergoes homologous recombination with the wild-type virus strain. Systems that employ recombinant retroviral vectors can be used for stable integration of the gene of interest into the host's genome, but only actively dividing cells can be targeted. In addition, the disadvantages of the adenoviral vector systems also apply to retroviral vector systems (immune response, disease etc.).
Positively-charged polycationic molecules such as polylysine peptides which bind non-specifically to the negatively charged nucleic acids have been used to introduce DNA into the chromosome of the recipient cell or organism. Cationic lipid vesicles, liposomes and micelles have been used in aggregates with DNA and viral envelope glycoproteins in non-specific, delivery of genes. Liposomes, vesicles composed of synthetic or non-natural lipids, such as long-chain fatty acids, can be used to carry the nucleic acid into the cell cytoplasm non-specifically. In these systems, the liposomes are structured to “best fit” the nucleic acid and insertion into the cell is through non-specific uptake.
The interaction of the liposomal delivery systems discussed above with the nucleic acid to be delivered is non-specific. In addition, prior art techniques are designed to deliver multiple copies of the nucleic acid to the cell cytoplasm. Optimally, however, only one or two copies of a gene should be transfected per cell throughout the organism to replace a defective set of genes only in the specific cells and tissues where it would normally be expressed.
Thus there is a need for a safe and efficient gene delivery system that may be employed in the burgeoning filed of gene therapy.
SUMMARY OF THE PRESENT INVENTION
The present invention contemplates a gene delivery system for use in gene therapy. Thus in particular embodiments, the present invention provides a composition comprising an isolated polypeptide comprising at least one LDL or VLDL nucleic acid binding domain; and a nucleic acid comprising an LDL or VLDL binding sequence, wherein the nucleic acid is bound to the polypeptide. In particularly preferred embodiments, the polypeptide comprises an LDL nucleic acid binding domain. In other embodiments, the polypeptide comprises a VLDL nucleic acid binding domain. In particular aspects of the present invention, the nucleic acid comprises an expression region operably linked to a promoter active in eukaryotic cells. In more particular embodiments, the expression region encodes a polypeptide. In other preferred embodiments, the expression region comprises an antisense construct.
In those embodiments in which the expression region encodes a polypeptide, the polypeptide may be selected from the group consisting of &agr;-globin, &bgr;-globin, &ggr;-globin, granulocytei macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor (TNF), IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, &bgr;-interferon, &ggr;-interferon, cytosine deaminase, adenosine deaminase, &bgr;-glucuronidase, hypoxanthine guanine phosphoribosyl transferase, galactose-l-phosphate uridyltransferase, glucocerbrosidase, glucose-6-phosphatase, thymidine kinase, lysosomal glucosidase, growth hormone, nerve growth factor, insulin, adrenocorticotropic hormone, parathormone, follicle-stimulating hormone, luteinizing hormone, epidermal growth factor, thyroid stimulating hormone of CFTR, EGFR, VEGFR, IL-2 receptor, estrogen receptor, Bax, Bak, Bcl-X
s
, Bik, Bid, Bad, Harakiri, Ad E1B, an ICE-CED3 protease neomycin resistance, luciferase, adenine phosphoribosyl transferase (APRT), retinoblastoma, insulin, mast cell growth factor, p53, p16, p21, MMAC1, p73, zac1 and BRCAI.
In those embodiments in which the expression region

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lipoproteins as nucleic acid vectors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lipoproteins as nucleic acid vectors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lipoproteins as nucleic acid vectors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3172763

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.