Linkage assembly for variable engine speed control

Internal-combustion engines – Engine speed regulator – Idle speed control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S400000

Reexamination Certificate

active

06729298

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to engine speed controls and, more specifically, to a linkage assembly for an engine speed control.
2. Description of the Related Art
Small gasoline engines are often used with small recreational vehicles such as go-carts and mini-bikes. Such vehicles generally include a user-operated speed control mechanism such as a foot operated accelerator or a hand operated rotatable grip. Such vehicles are oftentimes operated at full throttle during nearly the entire time the vehicle is operated. For example, the operator of a go-cart may fully depress the foot accelerator during the entire time that the vehicle is being operated.
Such vehicles may also include a centrifugal clutch which engages when the engine reaches a predetermined engagement speed or rpm and disengages when the engine speed falls below the predetermined engagement speed. The idle speed of the engine must be below the predetermined engagement speed to allow the clutch to disengage when the vehicle is idling.
SUMMARY OF THE INVENTION
The present invention provides a linkage assembly which may be used with a vehicle for controlling the speed of the vehicle. The linkage assembly includes first linkage body and a second linkage body wherein the first linkage body is operably coupled to a user operable input mechanism and the second linkage body is operably coupled to the engine for controlling the speed thereof. The first and second linkage bodies are relatively moveable in a manner which allows the idle and maximum engine speeds defined by the linkage assembly to be set or adjusted without requiring an adjustment in the range of motion of the user operable input mechanism.
The invention comprises, in one form thereof, a vehicle having a vehicle body, an engine mounted on the vehicle body and a user-operable speed control assembly operably coupled to the engine wherein the speed control assembly selectively varies the speed of the engine. The speed control assembly includes a user-operable input mechanism having a first range of motion ranging from an input idle position to an input maximum position. A first linkage body is operably coupled with the input mechanism and has a second range of motion ranging from a first linkage idle position to a first linkage maximum position wherein movement of the input mechanism from the input idle position through the input maximum position correspondingly moves the first linkage body through the second range of motion from the first linkage idle position to the first linkage maximum position. A first biasing member is operably coupled to the speed control assembly for biasing the first linkage body and the user-operable input mechanism toward the first linkage idle position and the input idle position respectively. A second linkage body having a third range of motion which includes a second linkage idle position and a second linkage maximum throttle position is also provided. The second linkage body is operably coupled to the engine wherein movement of the second linkage body through the third range of motion varies the speed of the engine. Movement of the second linkage member in a first direction from the second linkage idle position toward the second linkage maximum throttle position progressively increases the speed of the engine. The second linkage body is movable relative to the first linkage body and a second biasing member biases the second linkage body relative to the first linkage body in the first direction. The second linkage body is engagable with the first linkage body whereby relative movement of the second linkage body relative to the first linkage body in the first direction is limited and wherein, as the first linkage body is moved through the second range of motion from the first linkage idle position to the first linkage maximum position, the second linkage body remains engaged with the first linkage body and is moved in the first direction until the second linkage member engages a stop which limits further travel of the second linkage member in the first direction. The first linkage body being intermediate the first linkage idle and the first linkage maximum positions when the second linkage body engages the stop. Further travel of the first linkage body toward the first linkage maximum position after the second linkage body has engaged the stop causing relative movement of the first and second linkage bodies in a direction opposed by the second biasing element.
In an alternative embodiment, the vehicle may also include a first adjustable stop mechanism operably disposed between the first linkage body and the second linkage body wherein the first stop mechanism selectively adjusts the relative positions of the first and second linkage bodies when the second linkage body is engaged with the first linkage body. The vehicle may also include a second adjustable stop mechanism operably disposed between the second linkage body and the vehicle body wherein the second stop mechanism includes the stop and selectively adjusts the extent to which the second linkage body can travel in the first direction. The first and second linkage bodies may be pivotally mounted about a common pivot axis. Additionally, the first biasing member may secured at one end to the first linkage body.
The invention comprises, in another form thereof, a vehicle having a vehicle body and an engine mounted on the vehicle body. The engine includes a governor lever coupled thereto wherein movement of the governor lever adjusts the speed of the engine. The vehicle includes a user-operated input mechanism having a first range of motion ranging from an input idle position to an input maximum position. A first linkage body is operably coupled to the input mechanism and has a second range of motion ranging from a first linkage idle position to a first linkage maximum position. A first biasing member is operably coupled to the first linkage body and biases the first linkage body toward the first linkage idle position. A second linkage body moveable through a third range of motion including a first position and a second position is operably coupled to the governor lever. Movement of the second linkage body in a first direction from the first position to the second position progressively moves the governor lever in a direction causing an increase in the speed of the engine. The second linkage body is movable relative to and engageable with the first linkage body and a second biasing member biases the second linkage body relative to said first linkage body in the first direction and toward engagement with the first linkage body. A first adjustable stop mechanism selectively adjusts the relative positions of the first and second linkage bodies when the second biasing member biases the first and second linkage bodies into engagement. The first and second linkage bodies are engagable when the first linkage body is in the first linkage idle position. A second adjustable stop mechanism is provided wherein movement of the first linkage mechanism from the first linkage idle position toward the first linkage maximum position engages the second linkage body with at least a portion of the second stop mechanism. The second stop mechanism selectively adjusts the relative positions of the second linkage body and the governor lever when the second linkage body engages said portion of the second stop mechanism. The first linkage, member is movable relative to the second linkage member to the first linkage maximum position with the second linkage body remaining engaged with said portion of the second stop mechanism.
In alternative embodiments, at least one of the first and second stop mechanisms of such a vehicle may include a threadingly adjustable member. The first and second linkage bodies may also be pivotally mounted on a common pivot member. The operable coupling of the input mechanism and the first linkage body may include the use of a bowden cable secured to the first linkage body.
The invention comprises, in yet another form thereof, a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Linkage assembly for variable engine speed control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Linkage assembly for variable engine speed control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linkage assembly for variable engine speed control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3244288

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.