Linear ultrasound transducer array for an automotive...

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S730200

Reexamination Certificate

active

06431592

ABSTRACT:

DESCRIPTION
1. Technical Field
The invention relates to automotive occupancy sensor (AOS) systems for sensing the occupancy state of a vehicle including the location and/or nature of the occupant with respect to the vehicle interior, and more particularly to a linear or spaced array of ultrasound (US) transducers, used alone or with other sensors, mounted adjacent or in the headliner of a vehicle as part of an AOS system. In the preferred embodiment array permits the occupancy state of one or more seats in the vehicle to be determined by a AOS classification algorithm using only US echo range data, thereby reducing the cost and complexity of the system, improving speed and simplifying calibration.
2. Background Art
Studies have revealed that there is a class of automotive accidents causing injuries associated with airbag deployment and with the nature and position of the vehicle occupant, particularly with respect to airbags deployed toward seats occupied by children or infants in car seats. Automotive occupancy sensor (AOS) systems used in conjunction with cooperating airbag deployment systems (ADS) have been developed to regulate the deployment of the airbag. AOS occupancy determination is used by the ADS to cause airbag deployment to be aborted, deferred, modified as to rate, timing or amount of inflation, selecting which of several airbags to deploy, or otherwise to regulate airbag deployment in response to the occupancy state of the adjacent vehicle interior as classified or determined by the AOS. These are also known as “Smart Airbag Systems”. Originally proposed for front airbag systems, smart airbag systems may likewise include AOS for deployment regulation of side airbag systems. For background on AOS systems see Corrado, et al., U.S. Pat. No. 5,482,314 issued Jan. 9, 1996, and also Corrado, et al., U.S. Pat. No. 5,890,085, issued Mar. 30, 1999, and references cited therein, which patents are hereby incorporated by reference.
AOS systems may utilize various types of sensors which produce signals which provide information relating to occupancy state. These include pressure sensors, contact sensors, infra-red sensors, capacitance sensors, visible light sensors and the like. Ultrasound (US) transducers also may be included in AOS systems as active sensors; echoes of US signals transmitted by the transducer are detected by the transducer when reflected back from the vehicle interior and occupants.
AOS systems typically employ sensor systems and relatively complex classification and probability-based decision algorithms which require analysis of a number of different shape, timing and amplitude related aspects of the reflected US signals, in addition to the range of the principal US echo source. In some systems such analysis requires relatively expensive, high-sensitivity US transducers and relatively complex algorithms which process data gathered over relatively large time intervals to classify the occupancy state of the vehicle interior, increasing the amount of time required to arrive at a reliable classification determination. Environmental factors can induce distortions and noise in the US signal, complicating the task of reliable occupancy classification and/or state determination. In addition, the task of constructing a comparative database and designing the microprocessors and associated circuitry to handle the complex algorithm logic is reflected in the overall system development cost and per unit price.
There is a need for an inexpensive, reliable AOS system which can be widely and promptly implemented in production automobiles, especially in light of currently proposed advanced airbag control requirements, such as NHTSA 98-4405, Notice 1 RIN 2127-AG70. There is a need for an AOS sensor system which is inexpensive, reliable, robust (including against environmental disturbances) and which permits simplified, rapid classification based on quantitative US echo range data.
DISCLOSURE OF THE INVENTION
Summary Objects and Advantages of the Invention
It is a principal object and advantage of the invention to provide an array of ultrasound (US) transducers mounted adjacent or in the headliner of the passenger compartment of a vehicle which can provide signals for AOS occupancy classification and/or state determination based principally on simple echo range data. It is another object and advantage of the invention to provide an inexpensive durable sensor system which is easy to install, calibrate and maintain, and which is robust to environmental disturbances. It is another object and advantage of the invention to provide a sensor system which permits simplified and accelerated signal and classification, and/or state determination processing. Other objects and advantages will be evident from the descriptions, drawings and claims of this invention.
The linear AOS transducer array consists of a plurality of transducers, typically 2 to 8, preferably from about 4 to 6 per seat, in a spaced array, preferably mounted within the headliner adjacent the vehicle roof. In principal embodiments the array is an ordered array, generally spanning front to back in the passenger compartment. One preferred embodiment of the array comprises a linear strip of transducers generally parallel to the vehicle centerline mounted recessed into the headliner either generally above or to one side of the aft centerline normal seat position. The array is preferably located slightly to the outboard side of the normal head position, i.e. the fore/aft centerline of the seat. For a front seat occupant, such as the front seat passenger, the array preferably extends from near the rear edge of the sunvisor in front of the seat to about the longitudinal position of the seat headrest when the seat is adjusted to its most rearward position.
Unless the context implies a more restricted meaning, the term “occupant” and the term “object” are used herein to refer to a person(s) or object(s) occupying the seat and/or the volume above a seat (e.g., a driver, passenger, child or infant seat, passenger sitting on another passenger's lap, as parcels, animals or objects resting on a seat, and the like) the presence, motion and/or position of which are relevant to the safety criteria used to determine whether a particular airbag system in a vehicle should be deployed, enabled, disabled, aborted or deployed in a modified manner.
There may be a second AOS array symmetrically mounted on the opposite side of the vehicle centerline to provide occupancy determination for the driver and/or other front seat occupants. Arrays may be provided for occupant seats behind the driver/front passengers, i.e. in the middle or rear seating areas as desired. While the arrays are described herein in the present best mode as linear and generally parallel to the centerline, they also may be transverse or diagonal, as in a patterned array, e.g. at the vertices of a triangle, diamond or other polygon.
The transducers of the array are directed generally downward to transmit a generally parallel spaced set of US pulses. The downwardly directed set of pulses cover (“bathe” or “paint”) a volume of the vehicle interior denoted as the head zone (generally referred to herein as “H-zone”), which is a pre-selected occupancy zone. The H-zone is preferably defined by the volume in which the head and/or shoulders of an occupant will be present under circumstances under which the AOS classification algorithm determines that the airbag is to be enabled for deployment, or conversely, is to be aborted or disabled. The specific bounds of the H-zone are ordinarily preselected, based, e.g., on airbag characteristics for deployment safety and injury criteria. Likewise, if there is no occupant, or the occupant is out-of-position with respect to the H-zone so that the head and/or shoulders of the occupant do not intrude into the H-zone, the AOS classification algorithm determines that the airbag is to be disabled or not enabled, as the case may be, enabled with modified inflation rate, level or timing; or otherwise modified for deployment or nondeployment. An exa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Linear ultrasound transducer array for an automotive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Linear ultrasound transducer array for an automotive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear ultrasound transducer array for an automotive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2953657

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.