Linear suturing apparatus and methods

Surgery – Instruments – Suture – ligature – elastic band or clip applier

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06551330

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for placing sutures in tissue, and more particularly to a method and device for arthroscopic repair of a torn rotator cuff.
Suturing of body tissues is a time consuming aspect of most surgical procedures. Many surgical procedures are currently being performed where it is necessary to make a large opening to expose an area of the body which requires surgical repair. There are instruments that are becoming increasingly available that allow the viewing of certain areas of the body through a small incision without exposing the entire body cavity. These viewing instruments, called endoscopes, can be used in conjunction with specialized surgical instrumentation to detect, diagnose, and repair areas of the body that were previously only able to be repaired using traditional “open” surgery.
In the past, there have been many attempts to simplify the surgeons' task of driving a needle-carrying suture through body tissues to approximate, ligate and fixate them. Many prior disclosures, such as described in U.S. Pat. No. 919,138 to Drake et al, employ a hollow needle driven through the tissue with the suture material passing through the hollow center lumen of the needle. The needle is withdrawn, leaving the suture material in place, and the suture is tied, completing the approximation. A limitation of these types of devices is that they are particularly adapted for use in open surgical procedures, involving a large incision, where there is room for the surgeon to manipulate the instrument.
Others have attempted to devise suturing instruments that resemble traditional forceps, such as U.S. Pat. No. 3,946,740 to Bassett. These devices pinch tissue between opposing jaws and pass a needle from one jaw through the tissue to the other jaw, where grasping means pull the needle and suture material through the tissue. A limitation of these designs is that they also are adapted primarily for open surgery, in that they require exposure of the tissues to be sutured in order that the tissue may be grasped or pinched between the jaws of the instrument. This is a severe limitation in the case of endoscopic surgery.
The term “endosurgery” means endoscopic surgery or surgery performed using an endoscope. In conjunction with a video monitor, the endoscope becomes the surgeons' substitute eyes by which they operate. Operations using an endoscope are significantly less invasive when compared to traditional open surgery. Patients usually return home the next day or in some cases, the same day of the endosurgical procedure. This is in contrast to standard open surgical procedures where a large incision divides the muscle layers and allows the surgeon to directly visualize the operative area. Patients may stay in the hospital for 5 to 6 days or longer following open surgery. In addition, after endosurgical procedures, patients return to work within a few days versus the traditional 3 to 4 weeks at home following open surgery.
Access to the operative site using endosurgical or minimally invasive techniques is accomplished by inserting small tubes called trocars into a body cavity. These tubes have a diameter of, for example, between 3 mm and 30 mm and a length of about 150 mm (6 inches). There have been attempts to devise instruments and methods for suturing within a body cavity through these trocar tubes.
Such an instrument is disclosed in U.S. Pat. No. 4,621,640 to Mulhollan et al. The Mulhollan et al. patent describes an instrument that may be used to hold and drive a needle, but makes no provision for retrieval of the needle from the body cavity, nor the completion of the suture by tying. Mulhollan's instrument is limited in that the arc through which the needle must be driven is perpendicular to the axis of the device.
Another such instrument intended for endoscopic use is described by U.S. Pat. No. 4,935,027 to Yoon. This instrument uses oppositional hollow needles or tracks pushed through the tissue and coapted to create a tract through which the suture material is pushed. It is not clear how the curved tracks would be adapted to both be able to pierce the tissue planes illustrated, parallel to the tips of the tracks, and be curved toward each other to form the hollow tract.
Yet another instrument and method is shown by Caspari in U.S. Pat. Nos. 4,923,461 and 4,957,498. Caspari discloses an endoscopic instrument suitable for use through a trocar that resembles the Yoon approach, but with a single hollow needle on one of a set of oppositional jaws. The jaws simultaneously close, grasping the tissue. The jaw opposite the hollow needle has a window through which the hollow needle passes as the jaws close, freeing the lumen of the hollow needle from the tissue. Much like Yoon, a suture or suture snare is pushed down through the lumen and retrieved from the suture site, the jaws are released, and the suture is pulled back out through the trocar. This device may be used to place simple stitches in tissues that have been mobilized and have an edge accessible to the jaws. A limitation of the device is the manipulation that must be done with the snare if a suture other than a monofilament is used.
Another instrument specifically adapted for the orthopedic surgeon for the repair of a torn anterior cruciate ligament or for meniscal repair is disclosed by U.S. Pat. No. 4,836,205 to Barrett. The Barrett patent combines in a single instrument the functions of grasping the tissue to be sutured and the passing of the needles through that tissue. It is to be understood that this instrument is designed for use specifically under endoscopic view, and through trocars as previously described. A fairly generic endoscopic grasper is disclosed that has been adapted to allow for a hollow lumen from the handle of the grasper down to the distal tip of the grasper jaws. An elongate needle of 8 to 10 inches in length may be passed through this hollow lumen. The needle, being significantly longer than the grasper, is introduced through the handle of the grasper, and may be driven through the tissue being held in the grasping jaws of the device. The needle is then retrieved from the tissue via a trocar port placed substantially opposite the port through which the grasper is introduced. If a mattress stitch is desired, two needles attached to opposite ends of a suture are both passed through the tissue and retrieved. A limitation of this device is that there must be both visual and physical access to both sides of the tissue flap to be sutured. This requires trocars to be placed opposite each other and roughly on a line intercepting the tissue. This is a severe limitation in the instance of shoulder repair, and specifically in repair of the rotator cuff.
There have been other attempts to improve the methods of tissue repair. These include the development of staplers and anchoring devices. In response to some of the aforementioned problems in placing sutures in tissues endoscopically, manufacturers have developed tissue staplers. These devices utilize stainless steel or titanium staples that are constructed much like the staples used to hold papers together. The major disadvantage of these kinds of staplers is that they leave metal in the body. For some tissues this is not a problem, however in some procedures, metal staples left within the tissues can be a major hindrance to the healing process.
In orthopedic surgery, many different designs for bone anchors have been developed. These anchors allow soft tissues to be reattached to bone, and simplify the process by removing the need to create a trans-osseous tunnel. Trans-osseous tunnels are created in bones to allow suture material to be threaded through and tied across the bony bridge created by tunnels after it has been placed through the soft tissues and tied with conventional knots. Anchors fabricated from stainless steel or titanium are commonly used in joint reconstructions, and, because the metal is contained in the bone, it does not cause a problem with healing.
While endoscopy has

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Linear suturing apparatus and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Linear suturing apparatus and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear suturing apparatus and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3006466

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.