Linear spaced dielectric dot separator pressure sensing...

Electricity: circuit makers and breakers – Weight – Treads

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06307168

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to pressure sensing switch arrays and more specifically concerns switch arrays for the detection of the presence or absence of a person from a hospital bed, wheel chair, medical seating structure, baby carriage or any other body supporting structure to which it may be useful to determine the status of occupancy, and to the method of making such switches.
2. Description of the Related Art
Pressure sensing switch arrays presently used in many medical facilities are disclosed in previously issued U.S. Pat. Nos. 4,484,043 and 4,565,910. In these known devices, broad bands of conductive material are used in upper and lower layers in such a way that contact between any portion of the upper and lower layer completes an electrical circuit. While this type of switch array works reasonably electrically, they are somewhat difficult and slow to manufacture in a manner providing consistency and predictability of operation and consequently sufficiently expensive to limit their broad use as a single use disposable device. Equivalently they have difficulty in reliably sensing patient body mass weights of less than 100 pounds. These known devices are also of relatively thick profile and stiffness to provide adequate separation of the conductive bands thereby resulting in diminished patient comfort when in use. Also, these known devices are not completely sealed and therefore do not provide a fluid impervious device, potentially compromising the devices integrity and consistency of operation.
An alternative pressure sensing switch design is disclosed in previously issued U.S. Pat. Nos. 5,554,835 and 5,623,760. The functionality of the device identified in these known patents derives from membrane switch technology comprising an upper, middle and lower laminar elongated members. Electrically conductive elements affixed to the lower surface of the upper member traverse cavities provided by the structure of the middle member. A second array of electrically conductive bands are fixed to the upper surface of the lower member and equivalently traverse the cavities provided by the middle member and the upper member bands. Selected lower member conductive bands are discretely connected to pins of an electrical input connector and the other lower member bands are discretely connected to alternative pins of the same electrical connector forming an output lead. An array of substantially parallel spaced apart dielectric bands is fixed to the lower member upper surface and traverses the cavities between the first and second arrays of conductive bands at a forty-five degree angle in such a way to separate the first and second arrays of conductive bands from making electrical contact with each other in the area of overlap between the dielectric bands.
Pressure derived electrical activation of the first described pressure sensitive switch design identified in U.S. Pat. Nos. 4,484,043 and 4,565,910 is more frequently achieved by a crimping or kinking of the device than by direct pressure application through the exterior of the upper or lower surface of the device. Pressure derived electrical switch activation of the second described device disclosed in U.S. Pat. Nos. 5,554,835 and 5,623,760 is achieved by direct pressure application to the outer surface of either the upper or lower member or by flexation of the device. It is, however, a function of the second described device that reliable pressure derived switch activation typically occurs only when direct pressure is applied to a small surface area location—typically less than one square inch—at any given location on the outer surfaces of the upper or lower members. Equivalent, or even substantially greater pressure when applied to a larger surface area—up to and including the entire surface area of the device—will not reliably result in electrical switch contact within the device unless the device exhibits considerable flex under such pressure or the applied direct pressure over a large surface area of the device exceeds one hundred pounds body mass weight or greater. Additionally, this described device exhibits complexity and expense in manufacturing and operation due to its utilization of an electronic style electrical connector to permit the inflow and output of a suitable derived external driver current to be applied to the device. The pressure sensing switch array of the present invention has specific design features which distinguish it from the prior art devices.
SUMMARY OF THE INVENTION
In accordance with the invention, a pressure sensing switch array is provided having upper, middle, and lower laminar elongated members. The middle member has one or more openings which define one or more cavities between the upper and lower members. A first array of essentially parallel, spaced apart electrically conductive bands is fixed to an upper surface of the lower member and traverses the cavities. A second array of substantially parallel spaced apart electrically conductive bands is fixed to the lower surface of the upper member and traverses the cavities and the lower member bands. Selected upper member bands are discretely connected to a strain relief stabilized releasable electrical snap stud connector and the other upper member bands are discretely connected to a second strain relief stabilized releasable electrical snap stud connector. A dielectric dot matrix of specific configuration, consistency and linear placement is affixed to the upper surface of the electrically conductive bands traversing the upper surface of the lower member in such a manner to effectively separate and control the first and second arrays of conductive bands from making electrical contact with each other until sufficient external pressure applied to the external surfaces of either the upper or lower member overcomes the flexible resiliency of either the upper or lower members permitting electrical contact to occur between the electrically conductive bands of the upper and lower members to generate electrical contact in those areas not occupied by the dielectric dot matrix array. The conductive bands are of substantially equal width, with the dots of the dielectric dot matrix array being of slightly narrower diameter than the width of the electrically conductive bands comprising the upper surface of the lower member.
The specific construction, consistency, dimensions and linear placement of the dielectric dot matrix, in combination with other specifically formulated elements of the overall pressure sensing switch array, provide consistently high and measurably improved broad surface area pressure sensitivity and selectivity. The use of strain relief stabilized releasable electrical snap stud connectors aids considerably in the ease of standardized production resulting in significantly lower final product cost, while concurrently improving the end-users product understanding and ease of use. The laminar members of the described invention are of heat stabilized polyester film with the conductive bands being formed of a specific formulation of silver/graphite conductive ink screened or otherwise appropriately printed on to their respective supportive members. In making this pressure sensing array, a complement of substantially parallel, spaced apart electrically conductive bands are applied to the upper surface of the lower flat, flexible member. To the upper surface of these aforementioned electrically conductive bands are fixed a dot matrix of a suitable dielectric material of highly specific thickness, diameter, and linear spaced pattern. A second complement of substantially parallel spaced apart electrically conductive bands are applied to the lower surface of the upper fiat flexible member. This array includes a conductive input lead connected between alternating members of this array and a strain relief stabilized releasable electrical snap stud connector. A second output electrical conductive lead is equivalently connected between those alternating electrically conductive elements not conne

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Linear spaced dielectric dot separator pressure sensing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Linear spaced dielectric dot separator pressure sensing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear spaced dielectric dot separator pressure sensing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563905

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.