Linear power amplifier bias circuit

Amplifiers – With semiconductor amplifying device – Including particular biasing arrangement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C330S285000

Reexamination Certificate

active

06333677

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to radio frequency linear power amplifiers and particularly relates to providing a bias circuit for such amplifiers.
BACKGROUND
Wireless communications represent an enabling technology for modern culture. While there are seemingly endless varieties of wireless communication devices such as cellular telephones, two-way pagers, and wireless personal digital assistants, all such devices incorporate essentially common functionality. Information, voice or otherwise, is transmitted between a given wireless device and a remote user or system through a supporting wireless communications network. With the increasing popularity of wireless communication devices, designers are forced to devise methods of supporting ever-increasing numbers of device users in a finite bandwidth.
Most contemporary schemes for supporting a large number of communication device users within a given bandwidth are based on digital transmission techniques. Unlike conventional analog communications systems, such as the North American Advanced Mobile Phone System standard (AMPS), the newer digital transmission standards involve both envelope and phase (or frequency) modulation techniques, and require precise transmit power control. Whereas a communications device transmitting under the AMPS standard typically used a power amplifier biased for saturated or quasi-saturated operation, digital transmission standards impose strict requirements for transmitted signal fidelity and transmitted signal power, as well as strict limitations on adjacent channel power, which is a measure of interference between adjacent radio channels. These strict standards mandate the use of linear or quasi-linear power amplifiers. Appropriate amplifier bias networks are critical in achieving acceptable amplifier performance.
Power control is an essential element in most digital transmission schemes. Oftentimes, the transmitted signal power must vary linearly over a range of as much as 35 dB. One method of achieving transmit signal power control involves varying the amplitude of the radio frequency signal to be amplified by the power amplifier, while configuring the power amplifier to have a fixed gain. Thus, an associated bias network must provide the correct amount of amplifier bias current over widely ranging input and output signal magnitudes. This type of bias network must typically support both small and large signal operation of the associated power amplifier. Ideally, the bias circuit provides bias current proportional to the input signal—the radio frequency signal to be amplified—power or amplitude over the expected input signal range. Obviously, at the highest levels of input signal power, significant bias current magnitude may be required from the bias network in order for the power amplifier to linearly amplify the input signal.
For some types of power amplifiers, the power amplifier process technology has intrinsic characteristics that can reduce the amount of bias current required from the bias network with increasing input signal power. Power amplifiers implemented using gallium arsenide (GaAs) heterojunction bipolar transistor (HBT) technology exhibit increasing gain with increasing emitter current density. Essentially, HBT amplifiers require proportionately less bias current at higher levels of output power. Other types of process technologies do not exhibit similar characteristics. For example, silicon germanium (SiGe) is a promising process technology in that it allows the integration of logic gates and power transistors, while exhibiting good high frequency characteristics. However, bipolar transistors implemented in SiGe tend to exhibit gain compression, in which their gain tends to fall or at least flatten beyond a certain level of output signal power. Indium phosphide (InP) represents another otherwise promising power amplifier process technology exhibiting similar problems with gain compression.
Ideally, the bias network would provide adequate bias current to insure linear or quasi-linear operation across the full range of operating power for the power amplifier. Because of gain compression, however, the magnitude of bias current required at higher power levels is significant. Existing approaches to linear amplifier bias network design are not adapted to provide such significant levels of bias current. Because of the radio frequency signals involved, and because of cost and design considerations, power amplifier bias networks for use in portable communication devices should involve as few components as possible, and should adopt relatively straightforward circuit architectures.
Accordingly, there remains a need for an economical linear power amplifier bias network that embodies the desirable characteristics of low component count and good radio frequency signal response, while being able to provide the significant levels of bias current necessary for certain types of transistor power amplifiers. Ideally, such a bias network would be configurable so that it could be made compatible with a wide range of power amplifier types, having a broad range of bias current requirements. In order to satisfy the need for significant bias currents at high levels of output power, the needed bias circuit architecture must be configurable to have a bias current gain that may be adjusted to greater than unity if needed in a particular application.
SUMMARY
The present invention relates to a bias circuit suitable for use with a radio frequency power amplifier. Arranged in a modified current mirror configuration with the power amplifier, the bias circuit provides a configurable bias current gain that may be set for greater than unity bias current gain. Providing greater than unity bias current gain allows the bias circuit to provide substantial levels of bias current at high levels of power for the RF signal to be amplified, thus compensating for amplifier gain compression. Preferably, the bias circuit is used with an AC-coupled power amplifier and comprises a first transistor connected in a current mirror configuration with the power amplifier. This first transistor is driven by the input RF signal to be amplified and, in turn, drives a second transistor that provides varying levels of bias current responsive to the input RF signal. The amount of bias current provided by the bias circuit is proportional to the average power of the input RF signal and increases and decreases in response to negative and positive voltage swings, respectively, of the input RF signal.
On positive-going swings of the input signal, the AC-coupling capacitor or capacitors discharge into the base of the power device, thereby providing drive current for the power amplifier. On negative-going swings of the input signal, the bias circuit provides current to recharge the coupling capacitor. In order to maintain amplifier linearity and minimize amplified signal distortion, the bias circuit provides proportional charging of the coupling capacitor over a full range of input signal amplitudes (power). Its ability to provide adequate charging current to the coupling capacitor at very high levels of input signal power derives from the bias circuit's modified current mirror configuration, which provides for bias current gain greater than unity.
Such bias current gain is not required, and indeed, may be undesirable for certain kinds of power amplifiers. For example, radio frequency power amplifiers based on gallium arsenide (GaAs) heterojunction bipolar transistors (HBTs) actually experience, to a point, increasing gain (beta) with increasing emitter current densities. For such amplifiers, amplifier gain may actually increase with increasing input signal power. The present bias circuit may be configured to provide less than unity bias current gain for compatibility with HBT power amplifiers, or other types of bias circuit may be used. However, radio frequency power amplifiers implemented in other process technologies do exhibit potentially significant gain compression, and it is with such types of power amplifiers that t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Linear power amplifier bias circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Linear power amplifier bias circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear power amplifier bias circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588915

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.