Pumps – Motor driven – Electric or magnetic motor
Reexamination Certificate
2002-07-19
2004-06-01
Yu, Justine R. (Department: 3746)
Pumps
Motor driven
Electric or magnetic motor
C417S415000, C417S363000, C417S902000
Reexamination Certificate
active
06742998
ABSTRACT:
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to a linear compressor for reciprocating a piston in a cylinder by a linear motor to suck, compress and discharge gas.
(2) Description of the Prior Art
In refrigeration cycles, HCFC refrigerants, such as R
22
, are stable compounds and decompose the ozone layer. In recent years, HFC refrigerants have begun to be utilized as alternative refrigerants of HCFCs, but these HFC refrigerants have the nature for facilitating global warming. Therefore, a study is started to employ natural refrigerants such as HC refrigerants which do not decompose the ozone layer or largely affect global warming. For example, since an HC refrigerant is flammable, it is necessary to prevent explosion or ignition so as to ensure safety. For this purpose, it is required to reduce the amount of refrigerant to be used to as small as possible. The HC refrigerant itself does not have lubricity and is easily melted into a lubricant. For these reasons, when an HC refrigerant is used, an oilless or oil-poor compressor is required. On the other hand, a linear compressors, in which a load applied in a direction perpendicular to an axis of its piston is small and a sliding surface pressure is small is known as a compressor which can easily realize oilless conditions as compared with a reciprocal type compressor, a rotary compressor or a scroll compressor.
However, in this linear compressor, propagation of vibration caused by reciprocating motion of the piston is a big problem. A system for elastically supporting a compressing mechanism portion in a hermetic vessel to suppress vibration is conventionally employed in many cases, but it is difficult to sufficiently suppress the vibration. Means for lowering the vibration by opposing two pistons to each other is used, but a very complicated design is required.
SUMMARY OF THE INVENTION
The present invention has been accomplished in view of the above circumstances, and it is an object of the invention to provide a linear compressor in which a driving spring and an elastic supporting member for supporting a compressing mechanism portion are disposed such that a piston and the compressing mechanism portion move in opposed phases so that vibration of a hermetic vessel is canceled out.
To achieve the above object, according to a first aspect of the present invention, there is provided a linear compressor comprising a hermetic vessel having a compressing mechanism portion and a linear motor therein, wherein the compressing mechanism portion comprises a cylinder and a piston which reciprocates in the cylinder, the linear motor comprises a moving member which provides the piston with reciprocating driving force and a stator which is fixed to the cylinder and which forms a reciprocation path for the moving member, the compressing mechanism portion and the linear motor are classified into a piston-side mechanism member and a cylinder-side mechanism member, the piston-side mechanism member includes the piston, the moving member and another mechanism member which is movable together with the piston and the moving member, the cylinder-side mechanism member includes the cylinder, the stator and another mechanism member fixed to the cylinder or the stator, the cylinder-side mechanism member is elastically supported in the hermetic vessel by a first elastic member, and a reciprocating force in the axial direction is given to the piston-side mechanism member by a second elastic member whose one end is supported by the hermetic vessel.
According to a second aspect of the invention, in the linear compressor of the first aspect, the first elastic member and the second elastic member respectively comprise spring members, and the first elastic member and the second elastic member are disposed such that their vibrating directions are the same.
According to a third aspect of the invention, in the linear compressor of the second aspect, a relation of substantially Mp×k
1
=Mm×k
2
is established, in which mass of the piston-side mechanism member is defined as Mp, mass of the cylinder-side mechanism member is defined as Mm, the spring constant of the first elastic member is defined as k
1
, and the spring constant of the second elastic member is defined as k
2
.
According to a fourth aspect of the invention, in the linear compressor of the second aspect, the first elastic member comprises a plurality of plate-like leaf springs.
According to a fifth aspect of the invention, in the linear compressor of the fourth aspect, the first elastic member comprises a combination of a pair of substantially C-shaped leaf springs, the second elastic member is a coil spring, and the second elastic member is disposed in a central space of the first elastic member.
According to a sixth aspect of the invention, in the linear compressor of the second aspect, the first elastic member is a non-linear spring having a linear spring stiffness up to a certain displacement and the spring stiffness is abruptly increased thereafter.
According to a seventh aspect of the invention, in the linear compressor of the sixth aspect, the first elastic member is a coil spring.
According to an eighth second aspect of the invention, in the linear compressor of the sixth aspect, the first elastic member is a laminated leaf spring.
According to a ninth aspect of the invention, in the linear compressor of any one of the first to eighth aspect, the linear compressor is operated using refrigerant mainly comprising carbon dioxide.
According to the first aspect, the cylinder-side mechanism member is elastically supported in the hermetic vessel by the first elastic member, and a reciprocating force in the axial direction is given to the piston-side mechanism member by a second elastic member whose one end is supported by the hermetic vessel. With this structure, since the amplitude of the piston-side mechanism member and the amplitude of the cylinder-side mechanism member are different in phase, vibration of the hermetic vessel becomes small.
According to the second aspect, in the linear compressor of the first aspect, the first elastic member and the second elastic member respectively comprise spring members, and the first elastic member and the second elastic member are disposed such that their vibrating directions are the parallel. With this structure, the amplitude of the piston-side mechanism member and the amplitude of the cylinder-side mechanism member becomes opposite in phase, and vibration transmitted to the hermetic vessel is canceled out. Therefore, a linear compressor having smaller vibration as compared with the first aspect can be obtained.
According to the third aspect, in the linear compressor of the second aspect, a relation of substantially Mp×k
1
=Mm×k
2
is established, in which mass of the piston-side mechanism member is defined as Mp, mass of the cylinder-side mechanism member is defined as Mm, spring constant of the first elastic member is defined as k
1
, and spring constant of the second elastic member is defined as k
2
. With this structure, the vibration displacement of the hermetic vessel becomes substantially 0, and a linear compressor having almost no vibration can be obtained.
According to the fourth aspect, in the linear compressor of the second aspect, the first elastic member comprises a plurality of plate-like leaf springs. Since the leaf spring is strong against lateral load as compared with a coil spring, high reliability can be obtained even if disturbance force is applied to the compressor.
According to the fifth aspect, in the linear compressor of the fourth aspect, the first elastic member comprises a combination of a pair of substantially C-shaped leaf springs, the second elastic member is a coil spring, and the second elastic member is disposed in a central space of the first elastic member. With this structure, the compressor can be reduced in size in its longitudinal direction.
According to the sixth aspect, in the linear compressor of the second aspect, the first elastic membe
Akazawa Teruyuki
Asaida Yasuhiro
Hasegawa Hiroshi
Kawahara Sadao
Nagaike Masaru
Armstrong Kratz Quintos Hanson & Brooks, LLP
Matsushita Electric - Industrial Co., Ltd.
Solak Timothy P.
Yu Justine R.
LandOfFree
Linear compressor with vibration canceling spring arrangement does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Linear compressor with vibration canceling spring arrangement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear compressor with vibration canceling spring arrangement will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3364385