Linear CMP tool design with closed loop slurry distribution

Adhesive bonding and miscellaneous chemical manufacture – Differential fluid etching apparatus – For liquid etchant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S259000

Reexamination Certificate

active

06521079

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of Chemical Mechanical Polishing (CMP). More particularly, the present invention relates to methods and apparatus for chemical mechanical polishing of substrates, such as semiconductor substrates, on a cylindrical rotating polishing pad in the presence of a chemically and/or physically abrasive slurry, and providing fresh supply of slurry, using a closed loop slurry supply system, onto the surface of polishing pad while the substrate is being polished.
DESCRIPTION OF THE PRIOR ART
Chemical Mechanical Polishing is a method of polishing materials, such as semiconductor substrates, to a high degree of planarity and uniformity. The process is used to planarize semiconductor slices prior to the fabrication of semiconductor circuitry thereon, and is also used to remove high elevation features created during the fabrication of the microelectronic circuitry on the substrate. One typical chemical mechanical polishing process uses a large polishing pad that is located on a rotating platen against which a substrate is positioned for polishing, and a positioning member which positions and biases the substrate on the rotating polishing pad. Chemical slurry, which may also include abrasive materials therein, is maintained on the polishing pad to modify the polishing characteristics of the polishing pad in order to enhance the polishing of the substrate.
The use of chemical mechanical polishing to planarize semiconductor substrates has not met with universal acceptance, particularly where the process is used to remove high elevation features created during the fabrication of microelectronic circuitry on the substrate. One primary problem which has limited the used of chemical mechanical polishing in the semiconductor industry is the limited ability to predict, much less control, the rate and uniformity at which the process will remove material from the substrate. As a result, CMP is a labor-intensive process because the thickness and uniformity of the substrate must be constantly monitored to prevent overpolishing or inconsistent polishing of the substrate surface.
One factor, which contributes to the unpredictability and non-uniformity of the polishing rate of the CMP process, is the non-homogeneous replenishment of slurry at the surface of the substrate and the polishing pad. The slurry is primarily used to enhance the rate at which selected materials are removed from the substrate surface. As a fixed volume of slurry in contact with the substrate reacts with the selected materials on the surface of the substrate, this fixed volume of slurry becomes less reactive and the polishing enhancing characteristics of that fixed volume of slurry is significantly reduced. One approach to overcoming this problem is to continuously provide fresh slurry onto the polishing pad. This approach presents at least two problems. Because of the physical configuration of the polishing apparatus, introducing fresh slurry into the area of contact between the substrate and the polishing pad is difficult. Providing a fresh supply of slurry to all positions of the substrate is even more difficult. As a result, the uniformity and the overall rate of polishing are significantly affected as the slurry reacts with the substrate.
In the conventional approach, the wafer is held in a circular carrier, which rotates. The polishing pads are mounted on a polishing platen which has a flat surface and which rotates. The rotating wafer is brought into physical contact with the rotating polishing pad; this action constitutes the Chemical Mechanical Polishing process. Slurry is dispensed onto the polishing pad typically using a peristaltic pump. The excess slurry typically goes to a drain, which means that the conventional CMP process has an open loop slurry flow and therefore uses and dispenses with an excessive amount of slurry that adds significantly to the processing cost. There also is no method for exactly controlling slurry flow.
Since the wafer to be polished, which has a flat surface, and the polishing pad, which in the conventional approach is mounted on a flat polishing table, are both rotating, there exists a velocity differential across the surface of the wafer during the polishing operation. This velocity differential has a negative impact on wafer polishing uniformity and planarity which across the die and across the wafer. This limits the application of the conventional CMP approach especially in Shallow Trench Applications, copper damascene, etc., which are involved in sub-quarter micron technology modes.
FIG. 1
shows a Prior Art CMP apparatus. A polishing pad
20
is affixed to a circular polishing table
22
which rotates in a direction indicated by arrow
24
at a rate in the order of 1 to 100 m RPM. A wafer carrier
26
is used to hold wafer
18
face down against the polishing pad
20
. The wafer
18
is held in place by applying a vacuum to the backside of the wafer (not shown). The wafer carrier
26
also rotates as indicated by arrow
32
, usually in the same direction as the polishing table
22
, at a rate on the order of 1 to 100 RPM. Due to the rotation of the polishing table
22
, the wafer
18
traverses a circular polishing path over the polishing pad
20
. A force
28
is also applied in the downward or vertical direction against wafer
18
and presses the wafer
18
against the polishing pad
20
as it is being polished. The force
28
is typically in the order of 0 to 15 pounds per square inch and is applied by means of a shaft
30
that is attached to the back of wafer carrier
26
. Slurry
21
is deposited on top of the polishing pad
20
.
FIG. 2
shows a typical Prior Art slurry delivery system. Slurry
21
of uniform chemical and mechanical composition is contained in the slurry vat
34
from where the slurry is pumped by the diaphragm pump
36
in direction
38
. The peristaltic pump
40
deposits controlled and intermittent amounts of slurry
21
onto the polishing pad
20
while the balance
44
of the slurry that had been pumped by the diaphragm pump
36
is returned to the slurry vat
34
. The rate at which the slurry
21
is provided by the two pumps
36
and
40
can be under control of conditions of operation and environment such as type of surface being polished, rate of rotation of either the wafer
18
and/or the polishing table
22
, etc.
U.S. Pat. No. 5,775,983 (Shendon et al.) shows a conical roller pad.
U.S. Pat. No. 5,709,593 (Guthrie et al.) shows a method for slurry distribution. However, this reference differs from the present invention.
U.S. Pat. No. 5,791,970 (Yueh) shows a slurry recycling system.
U.S. Pat. No. 5,750,440 (Vanell et al.) teaches a method to mix slurry for CMP.
U.S. Pat. No. 5,305,554 (Emken et al.) shows a ‘closed loop’ moisture control system for a vibratory mass finishing system.
U.S. Pat. No. 5,688,360 (Jairath) shows a cylindrical conditioning pad and slurry distribution system.
SUMMARY OF THE INVENTION
The present invention teaches a closed loop slurry distribution system. The novelty of the present invention is that polishing pad is mounted on a rotating cylindrical platform that consists of a pad/core arrangement, instead of the conventional flat platform on which the polishing pads are placed. The cylindrical pad has motion in the X-Y-Z directions; the cylindrical pad in addition has rotational motion. The wafer that is being polished may also have an X-Y-Z motion in addition to the rotating motion.
The novelty of the present design consists of as unique pad/core design with the polishing pads mounted on the surface of a cylindrical core. The slurry is pumped in the conventional manner (for instance using diaphragm pumps) and flows through a linear reservoir that is placed such that the reservoir almost touches the cylindrical pad and is parallel to this pad. This arrangement assures that a smooth layer of slurry is maintained across the polishing pad. Using this approach allows for the complete elimination of the peristaltic pump which under present operating conditions causes dri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Linear CMP tool design with closed loop slurry distribution does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Linear CMP tool design with closed loop slurry distribution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear CMP tool design with closed loop slurry distribution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3179341

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.