Fluid sprinkling – spraying – and diffusing – Reaction motor discharge nozzle – With means controlling amount – shape or direction of...
Reexamination Certificate
1999-08-25
2001-03-13
Freay, Charles G. (Department: 3746)
Fluid sprinkling, spraying, and diffusing
Reaction motor discharge nozzle
With means controlling amount, shape or direction of...
C239S265190, C239S265350, C239S265390, C239S265410
Reexamination Certificate
active
06199772
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to axisymmetric variable throat thrust vectoring nozzles and, more particularly, to a linear actuation and vectoring ring support and actuation apparatus for the actuating and supporting vectoring ring that is used to pivot the nozzle flaps that vector the nozzle exhaust flow.
2. Discussion of the Background Art
For military aircraft applications, there exists a need to increase the maneuverability of the aircraft, both for air to air combat missions and complicated ground attack missions. Aircraft designers seek to replace or augment the use of conventional aerodynamic surfaces such as flaps and ailerons with vectorable nozzles which turn or vector the exhaust flow and thrust of the gas turbine engine powering the aircraft. U.S. Pat. No. 4,994,660, issued to Hauer discloses an axisymmetric vectoring exhaust nozzle that provides a means for vectoring the thrust of an axisymmetric convergent/divergent nozzle by universally pivoting the divergent flaps of the nozzle in an asymmetric fashion or, in other words, pivoting the divergent flaps in radial and tangential directions with respect to the unvectored nozzle centerline. The flaps are pivoted by a vectoring ring which can be axially translated and gimballed or tilted about its horizontal and vertical axis (essentially have its attitude adjusted) through a limited range.
Vectored thrust produces tangential and radial loads referred to as side loads that are transmitted from the flaps by various load paths back to the engine casing through the actuators. These tremendous loads require heavy actuators to absorb the loads and, particularly, the bending moments exerted on the actuator shafts by thrust vectoring. U.S. Pat. No. 5,174,502, issued to Lippmeier et al. discloses a support for the vectoring ring that transfers at least a portion of the side loads acting generated by a gas turbine engine thrust vectoring nozzle to a relatively stationary portion of the engine. U.S. Pat. No. 5,174,502 discloses an apparatus to minimize or eliminate the side loads transferred by the nozzle to the actuators, reduce or eliminate the bending moments that the actuators would be subject to due to the radial loads, and to minimize the size and weight of the nozzle actuators and hydraulic system used to power the actuators. The support includes pivotal links that provides for allowing two degree of freedom (2 DOF) pivoting or gimballing motion and axial translation of the vectoring ring. One of the embodiments has a dual link support means with a rectangular first link pivotally attached to the engine casing by a hinge. The first link is pivotally connected to a second link which in turn is universally hinged to the vectoring ring by a 3 DOF or spherical joint.
SUMMARY OF THE INVENTION
Briefly, in accordance with one aspect of the present invention, a vectoring ring support and actuation apparatus is provided for actuating a vectoring ring and transferring the side loads acting on the vectoring ring and generated by a gas turbine engine thrust vectoring nozzle to a relatively stationary portion of the engine and tilting the vectoring ring to vector the thrust of the nozzle. The vectoring ring support and actuation apparatus includes a linear actuator connected by a slider bar to the vectoring ring. A first actuator joint connects the linear actuator to a forward end of the slider bar and an aft actuator joint connecting an aft end of the slider bar to the vectoring ring. A vectoring ring support apparatus slidably supports the slider bar, restrains circumferential movement of the vectoring ring, and transfers side loads acting on the vectoring ring to a relatively stationary portion of the engine. The aft actuator joint preferably has three degrees of freedom and the forward actuator joint has one rotational degree of freedom. The aft actuator joint preferably is a ball joint having three rotational degrees of freedom. The forward actuator joint is preferably a clevis joint including two lugs interdigitated with and pivotably pinned to three lugs.
In one embodiment of the present invention, the vectoring ring support apparatus includes at least one guide assembly having a hollow guide mounted on a casing of the engine by a support structure and the slider bar slidably supported within the guide. Preferably, the vectoring ring support apparatus includes forward and aft ones of the support wherein the aft support is spaced apart from and aft of the forward support. Another embodiment includes rollers mounted to and inside of the hollow guide and disposed between the guide and the slider bar. Other embodiments provide the slider bar being hollow rectangular or cylindrical in cross-section. In the cylindrical embodiment, an annular liner bearing is slidably disposed about the cylindrical slider bar and is retained by radially running slots or tracks in the circumferential ring support assembly.
In the drawings as hereinafter described, a preferred embodiment is depicted; however, various other modifications and alternate constructions can be made thereto without departing from the true spirit and scope of the invention.
Among the advantages provided by the linear actuation and vectoring ring support apparatus of the present invention is the combined ability to reduce or even eliminate the side loads transferred to the vectoring ring actuators and the bending moments that the actuators and their arms would be subjected to with the ability to actuate the vectoring ring. The present invention also reduces the overall size of the structure needed to perform both of these functions as compared to designs in the prior art and reduces the number of parts used to provide the combined functions of the invention. The present invention combines the actuation and support mechanisms for the vectoring ring rather than splitting up the functions of ring support and ring actuation into two separate interface points on the vectoring ring and accomplishes the two functions of ring actuation and support with a single mechanism making the apparatus less complicated and structurally improved over that of the prior art. The invention frees up space in the circumferential direction along the exhaust duct or engine casing, making it easier to find room for other nozzle hardware.
The present invention eliminates a set of devises on the vectoring ring which would be used to fasten the actuators to the ring, thus, simplifying the ring and reducing its cost and weight. Placing the vectoring ring actuators in front of and in line with the support and actuation apparatus of the present invention opens up space in the circumferential direction around the nozzle engine casing, making it easier to find room for other nozzle hardware.
REFERENCES:
patent: 4994660 (1991-02-01), Hauer
patent: 5150839 (1992-09-01), Reedy
patent: 5174502 (1992-12-01), Lippmeier et al.
patent: 5329763 (1994-07-01), Ibarreche Mendia et al.
patent: 5437411 (1995-08-01), Renggli
patent: 5442909 (1995-08-01), Snow et al.
patent: 5485959 (1996-01-01), Wood et al.
patent: 5779152 (1998-07-01), Renggli et al.
patent: 5893518 (1999-04-01), Bruchez, Jr. et al.
Freay Charles G.
General Electric Company
Hayes Ed
Hess Andrew C.
Young Rodney M.
LandOfFree
Linear actuation and vectoring ring support mechanism for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Linear actuation and vectoring ring support mechanism for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linear actuation and vectoring ring support mechanism for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2463411