Lightning detection and data acquisition system

Electricity: measuring and testing – Testing potential in specific environment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S12300R, C324S122000, C342S460000, C342S465000, C073S170240

Reexamination Certificate

active

06788043

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to lightning detection and data acquisition systems, and in particular to systems that provide continuous lightning detection and are programmable to allow for user-selectable evaluation criteria.
Lightning detection and data acquisition systems are used to detect the occurrence and determine the location of lightning discharges, and gather other data about the discharges. In traditional lightning detection systems, a plurality of sensors are placed tens to hundreds of kilometers apart to remotely detect the electric and magnetic fields of lightning discharges. Such discharges may be between a cloud and the ground (“CG”) or within a cloud (“IC”). Information from the sensors is transmitted to a central location, where analysis of the sensor data is performed. Typically, at least the time of occurrence and location of the discharges are determined from data provided by a plurality of sensors.
Remote sensors of lightning detection and data acquisition systems typically detect electric and magnetic fields of both CG and IC lightning flashes, which are composed of many discharges. It is often important to be able to distinguish between the two types of flashes. To that end, remote sensors often look at the low-frequency (“LF”) and very-low-frequency (“VLF”) emissions from lightning discharges. The electrical signals produced by LF and VLF (“LF/VLF”) detectors are ordinarily integrated prior to analysis to produce a waveform representation of the electric or magnetic discharge field, as the antenna inherently responds to the time derivative of the field. Analyzing signals representative of either an electric or magnetic field to distinguish CG and IC discharges is referred to as performing waveform analysis. There are several criteria for distinguishing between CG and IC events. One well known method for distinguishing lightning signals both in the LF and in the VLF range is to examine the time that passes from a peak in a representative signal to the instant it crosses a zero amplitude reference point. This is referred to as a peak-to-zero (“PTZ”) method of analysis. A relatively short PTZ time is a good indication that an IC discharge has occurred. Another well known method of distinguishment is referred to as a bipolar test wherein the representative signal is examined for a first peak and a subsequent peak of opposite polarity which is greater than a predetermined fraction of the first peak. Such an occurrence is another good indication of an IC discharge. Yet another test for IC discharges is the presence of subsequent peaks of the same polarity in a representative signal greater than the initial peak. This is predicated on the fact that some IC discharges have a number of small and fast leading electromagnetic pulses prior to a subsequent larger and slower pulse. In the absence of such criteria indicating that the discharge is an IC discharge, it is ordinarily assumed to be a CG discharge. Even with the application of all established criterion for distinguishing between CG and IC events, some events are still misclassified.
An alternative method of lightning detection is to monitor very high frequency (“VHF”) radiation from lightning discharges. However, VHF detection systems must be able to process information at extremely high data rates, as VHF pulse emissions in IC lightning occur approximately one tenth of a millisecond apart. Additionally, VHF systems can only detect lightning events that have direct line of sight to the sensor. One such system is currently in use by NASA at Kennedy Space Center in Florida. However, this system is further restricted to line of sight between the sensors and the central analyzer as it uses a real-time microwave communication system. Additionally, the VHF system in use by NASA has proven to be expensive to install and maintain.
Previous lightning detection and data acquisition systems for detecting low frequency electric field signals have been designed around a combination of two location methods, time-of-arrival (“TOA”) and magnetic direction finding, with time-domain field waveform analysis. In most of these systems, the sensors are predominately analog devices. Using analog devices in lightning sensors requires the utilization of “track and hold” circuits to detect a qualifying event, capture a representative signal, and perform waveform analysis on it. Due to an accumulation of delay periods in these “track and hold” circuits, these sensors have a large “re-arm” time, or “dead-time”, during which the sensors do not record subsequent lightning events. Even more modern lightning detection and data acquisition systems that are substantially digital have some dead time. For example, the sensors in some such systems have a “dead-time” of 5 to 10 milliseconds, and even the most current digital sensors have a “dead-time” of up to one millisecond. The latter are capable of detecting only a limited fraction of IC lightning discharges. This is due in part to the fact that several IC lightning discharges could occur in a single millisecond. CG lightning flashes, however, tend to have fewer discharges with relatively large periods of times between individual discharges. If a previous generation sensor is designed to monitor both CG and IC electric field signals, a significant portion of time is occupied processing IC discharge events at the expense of recording CG events. Another aspect associated with sensor dead times and the TOA location method is the uncertainty in assuring that multiple remote sensors will respond to the same IC lightning event. Due to attenuation suffered by electromagnetic waves as they travel long distances over the earth, remote small amplitude events become difficult to detect. If different sensors produce time-of-arrival information from different events, the computed discharge location will have significant error.
Analog sensors operating at LF/VLF frequencies are difficult to tune for both CG and IC lightning discharges. The median amplitude of a CG field signal is about an order of magnitude greater than the median amplitude of an IC field signal. Optimizing the gain of one of these sensors to detect IC events often causes the sensor to become saturated with the much greater energy of nearby CG lightning discharges. Therefore, it is customary to adjust the gain to accommodate both types of field signals, reducing a sensor's ability to detect IC events. As distant IC lightning discharges become attenuated by propagation over the ground, they become difficult to distinguish from background environmental noise.
In order for the lightning detection system to provide useful information in a timely manner, there must exist a method of transmitting sensor information to a central location. This central location must collect information from numerous remote sensors which is then correlated to establish the location, magnitude, and time of occurrence of lightning discharges. Existing detection systems generally have low-bandwidth communication systems, limiting the amount of information that a sensor can transmit to the central analyzer. In many existing lightning detection networks, the sensors are connected to a central location by low-speed telephone modems, usually 2400 to 9600 bits per second. In the past, this communication restriction was not overly critical, as the large dead-time of previous generation analog sensors limited the amount of information that could be collected and sent to the central analyzer.
Once the sensor information arrives at a central location, it must be analyzed. The information from each sensor is compared against incoming information from other sensors. This correlation process attempts to find corresponding data to determine the location, magnitude, and time of occurrence of lightning discharges. However, current correlation techniques are not sufficient to handle large amounts of information when the time between discharges is more than an order of magnitude shorter than the travel time between sensors. In fact, if a lightning detect

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lightning detection and data acquisition system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lightning detection and data acquisition system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lightning detection and data acquisition system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.