Electric lamp and discharge devices: systems – Current and/or voltage regulation – Pre-selectable regulator systems
Reexamination Certificate
1998-08-25
2001-02-13
Vu, David (Department: 2821)
Electric lamp and discharge devices: systems
Current and/or voltage regulation
Pre-selectable regulator systems
C315S294000, C315S295000, C315S316000
Reexamination Certificate
active
06188181
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to improvements in lighting control systems of the type used to send low voltage control signals to electronic ballasts and transformers for controlling an attached lighting load.
BACKGROUND OF THE INVENTION
There are lighting control systems that operate to control multiple zones of lighting through multiple dimming circuits to achieve any one of several desired lighting scenes. These systems include wallbox mounted control units which operate to multiplex digital lighting control information on a communications link. Each wallbox mounted control unit includes zone-intensity actuators which are manipulable to alter the information transmitted by their respective wallbox mounted control unit to vary the lighting intensity of an associated lighting zone. A central control panel (controller) includes a microprocessor adapted to receive and process the multiplexed information transmitted on the link, and re-transmit digital lighting control information, on a second multiplex link, to the dimming circuits. The microprocessor is programmed to assign a preselected dimming circuit to any one of the zone-intensity actuators when that actuator is manipulated according to a predetermined sequence.
There are systems for assigning actuators of a wallbox-mountable lighting control unit to one or more dimmer circuits located in a separate dimming panel for controlling an attached lighting load. The dimmer circuits use a phase control output to adjust the RMS voltage across the load and hence its luminous intensity. A system of this type is commercially available from Lutron Electronics Co., Inc. and is sold under the registered trademark GRAFIK Eye® dimming panel.
In a GRAFIK Eye system, the output from the wallbox control unit (main unit) is an RS485 digital output. The GRAFIK Eye main units are connected on a four-wire link with each of the main units wired in a daisy chain fashion. Each main unit sends out zone-intensity data over the four-wire link to a control panel located in a dimming panel or relay panel. The information comes into the control panel as a unit address, a zone number, and an intensity value. The control panel takes the unit address, the zone number, and the intensity value, and maps it to the appropriate dimming cards in the GRAFIK Eye dimming panel or a relay in the GRAFIK Eye relay panel. Each dimming/relay card is connected to the control panel through a two-wire harness. The two-wire harness attaches to the dimming/relay card through a multiple pin connector. The first two pins of the connector are for receiving the serial data from the control panel. The other pins of the harness are used to assign an address to each dimming/relay card. This type of system is described in commonly assigned U.S. Pat. No. 5,530,322, “Multi-Zone Lighting Control System,” issued to Ference et al. This patent is herein incorporated by reference.
It is known that a wallbox-mountable lighting control system can be adapted to dim a plurality of groups of light sources in a room to any one of a number of different preset levels to achieve a like number of different lighting scenes. Each group of light sources defines a lighting zone and typically each zone is made up of the same type of light source, for example, incandescent lamps, fluorescent lamps, neon lamps, etc. which are all controlled by a phase controlled output. The system includes dimmers for adjusting the respective light level of the different lighting zones, and a display panel for displaying the instantaneous light level of each zone. A suitably programmed microprocessor or the like operates to normalize the system's dimming performance for different types of light sources so that a given change in dimmer setting produces the same change in perceived light level from each of the different types of light sources. The system user inputs the type of light source used in each zone by a software scheme that operates the light level indicators of the display panel in an alternative mode to indicate the various types of light sources. A system of this type is commercially available from Lutron Electronics Co., Inc. and is sold under the registered trademark GRAFIK Eye 3000 Series. This type of system is described in commonly assigned U.S. Pat. No. 5,430,356, “Programmable Lighting Control System With Normalized Dimming For Different Light Sources,” issued to Ference et al. This patent is herein incorporated by reference.
Thus, the prior art system controls different loads, but always with a phase controlled output. Separate devices/modules are available for controlling the intensity of different lighting load types which do not use a phase controlled output, such as voltage controlled load types (e.g., 0 to 10 volt sink and 0 to 10 volt source), duty cycle controlled load types (e.g., pulse width modulated (PWM)), and digital signal controlled load types (e.g., digital serial interface (DSI)). However, there is no single device/module that controls the intensity of several different lighting load types where the load types are voltage controlled load types, and/or duty cycle controlled load types, and/or digital signal controlled load types. Therefore, a need exists for a device / module that overcomes the drawbacks of the prior art and controls the intensity of different load types including voltage controlled load types, duty cycle controlled load types, and digital signal controlled load types.
SUMMARY OF THE INVENTION
In view of the foregoing discussion, it is an object of the present invention to provide an improved signal generator that is capable of providing a multitude of control schemes to connected ballasts or transformers to adjust the luminous output of an attached lamp (hereinafter also referred to as a light source or a lighting load). The control scheme is preferably at least one of the type 0 to 10V sink, 0 to 10V source, pulse width modulated (PWM), and digital serial interface (DSI).
It is also an object of this invention to provide a circuit for enabling a multitude of different control schemes to be outputted to an attached lighting load.
The present invention is directed to a lighting control system for selectively controlling the respective light levels of a plurality of lighting loads, each of the loads including a light source, each lighting load being one of a plurality of a voltage controlled load type, a duty cycle controlled load type, and a digital signal controlled load type. The lighting control system comprises a lighting control unit for generating zone-intensity information representing a desired light level for at least one of the plurality oflighting loads and placing the zone-intensity information on a communications link; a controller operatively connected to the lighting control unit via the communications link and responsive to the zone-intensity information on the communications link for adjusting the light level of the at least one lighting load; and a plurality of modules, each module being connected between the controller and at least one of the lighting loads, each module capable of controlling the light level of at least two of the load types.
According to one aspect of the present invention, an isolator is operatively connected between the controller and at least one of the modules. In accordance with another aspect of the present invention, a relay is operatively connected between the power source and at least one of the lighting loads, wherein each relay is controlled by the controller.
In accordance with a further aspect of the present invention, input means are provided for inputting the zone-intensity information to the lighting control unit. In accordance with another aspect of the present invention, an over-current protector and a miswire protector are connected between each of the modules and their associated lighting loads.
In accordance with further aspects of the present invention, the controller or a selector on a module provides a load type signal to the module.
In a further embodiment within the scope of the pre
Balog, Jr. Robert S.
Sinha Siddharth Prakash
Lutron Electronics Co. Inc.
Vu David
Woodcock Washburn Kurtz Mackiewicz & Norris
LandOfFree
Lighting control system for different load types does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lighting control system for different load types, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lighting control system for different load types will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2569732