Optical: systems and elements – Optical frequency converter – Dielectric optical waveguide type
Reexamination Certificate
2001-02-14
2004-04-20
Lee, John D. (Department: 2874)
Optical: systems and elements
Optical frequency converter
Dielectric optical waveguide type
C433S029000
Reexamination Certificate
active
06724522
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the priority of German patent document 100 06 286.5, filed Feb. 14, 2000, the disclosure of which is expressly incorporated by reference herein.
The invention relates to a light wave converter, which partially converts incident light into light of a longer wavelength, whereby the converted light is passed together with the unconverted light through a light guide to an exit port.
There exist photopolymerization devices, which emit blue light with a wavelength ranging from approximately 400 to 500 nm. Said photopolymerization devices are used, for example, in dental practices for polymerization of the photocuring composite materials. However, the light that is optimal for polymerization is so bright that the use of these lamps is not suitable for illumination purposes in the mouth. Moreover, the blue light color, which is emitted from such devices and is required for polymerization, is suitable only for this application. For purposes, such as diagnostics, however, white light has been demonstrated to be advantageous.
Similarly there exist white light emitting operating lamps for illuminating the area to be treated. In the dental domain this light is also guided with a mirror to the area to be treated for better illumination of the individual areas. However, this procedure assumes that there is no impediment in the ray path. Moreover, the level of illumination that can be reached with this method is inadequate to transilluminate, for example, teeth, as is helpful for a dental diagnosis or for illuminating tooth defects (cracks or caries).
The German Patent Document DE A 198 30 335 discloses a fiber rod light guide for dental purposes, whose core is jacketed with a color coat. This color coat enables complete blockage of the light and prevents the dentist from being blinded by light emitted from the side of the fiber rod. Furthermore, it makes it possible to guide light, generated by polymerization devices, specifically to the spatially narrowly defined area to be treated.
The German Patent Document DE A 2913415 (corresponding U.S. Pat. No. 4,266,535) discloses a diagnostic lamp in the form of a small device or a pocket device for tooth examination for fluorescent excitation of a fluorescible material that is applied to the teeth and the gums. The diagnostic lamp comprises a filter unit, which is adapted to the fluorescible material and which is made of a dichroic and a blue color filter. The existing filters result in a significant attenuation of the light, which renders detailed examination of the object to be viewed more difficult.
The German Patent Document DE 36 44 839 A1 discloses an illuminating device, in particular for polymerization of dental plastics, which can be cured by means of light in the blue spectral range, with a liquid light guide. It is stated that the fill liquid can contain, for example, a dye, which serves as the filter, or a fluorescing dye.
An object of the present invention can be regarded as providing a device, which enables better illumination of the area to be treated. It is supposed to be easy to use and at the same time, if desired, also be bright enough at one point in order to transilluminate, for example, also the individual teeth. In this manner, hidden tooth defects, like cracks or caries, can also be detected and/or diagnosed.
This problem is solved by providing a light wave converter, optionally as an attachment for a photopolymerization device, which emits light preferably in the blue spectral range. This light wave converter is described herein and in the claims.
An object of the invention is also a process for illuminating and/or transilluminating teeth, in particular for diagnostic purposes, whereby the light wave converter converts light, which is usually generated by a polymerization lamp.
The conversion of the light incident on the device can be achieved by different methods.
Usually one part of the wavelength range of the light, penetrating into the light wave converter or the converter substance, is converted into light of a longer wavelength by luminescent processes. Through additive color mixture light with another color impression can be generated in this manner as a function of the wavelength of the penetrating light and the converter substance that is used.
However, it is also contemplated according to certain preferred embodiments of the invention that the light is divided into two or more partial beams before or after penetration into the light wave converter, whereby a partial beam is guided to the light wave converter and is converted completely into another wavelength range, whereas another partial beam is not converted and is guided past the light wave converter. In the area of the exit port of the light wave converter the converted and unconverted beams are united again. Then the light that is generated thus is guided directly or through a light guide to an exit port.
In this respect the invention exhibits the following advantages.
The photopolymerization devices of high light output that are wide spread and have been demonstrated to be reliable in dental practices can also be used in a simple manner to illuminate the area to be treated and for diagnostic purposes for transilluminating individual teeth. In contrast to the operating lamps, the light intensity can be significantly increased at one point.
Since the light can be guided over a light guide to an exit port, the light can be focused directly on the area to be treated without the need for additional mirrors. This feature makes it possible to utilize the complete intensity of the generated light of the desired wavelength.
Furthermore, through the use of a suitable converter substance light of any arbitrarily long wavelength can be generated as a function of the wavelength of the arriving beam of light without having to insert filter systems. With the spectral colors that can be coordinated over wide ranges and can be generated from the converted light with the unconverted light by additive color mixture, it is possible to adapt the light wave converter to the desired task so that for diagnostic purposes or for illuminating especially defective teeth, for example, maximum contrast can be obtained.
In principle, the incident light can exhibit any conceivable wavelength in the visible range, thus from 380 nm to approximately 700 nm. In certain preferred embodiments the incident light has a wavelength, ranging from 380 nm to 520 nm, as normally generated by dental photopolymerization devices.
The light wave converter converts preferably one part of the incident light to one or more wavelength(s), lying in the green, yellow or red spectral range. Preferred is the generation of green light, because light having the wavelength spectrum of the color white can be generated through the additive color mixture with the unconverted portion of the incident blue light.
With white light, for example, teeth can be illuminated and optionally transilluminated more effectively and contrasted more reliably than with blue light. Defects in the teeth or the fillings, for example cracks and caries, can be better visualized in this manner.
However, embodiments are also contemplated with a conversion into a wavelength range, which is matched with the substance to be illuminated and which makes it possible, optionally together with filter units, to distinguish, for example, tooth fillings having the color of the tooth from the natural tooth substance. The wavelengths can also be chosen in such a manner that the converted light initiates, for example, therapeutic chemical reactions in the oral cavity of suitable light activatable substances.
Light devices, which emit short wavelength light in the visible range, are used especially in dental practices to cure photocuring substances. Thus, the inventive light wave converter makes it possible to expand the range of application of the already existing devices. Thus, the dental offices save money and space that would be required for the additional acquisition of a device to generate
3M ESPE AG
Lee John D.
LandOfFree
Light wave conversion arrangement and method for making same... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Light wave conversion arrangement and method for making same..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light wave conversion arrangement and method for making same... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3259727