Light source detection and categorization system for...

Optics: measuring and testing – Photometers – Photoelectric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S121000, C250S208100, C250S2140AL, C250S2140LS, C382S104000, C340S469000, C362S465000

Reexamination Certificate

active

06774988

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to automatic vehicle exterior light control systems. More specifically, the present invention relates to light source detection and categorization systems for use with automatic vehicle exterior light control.
Automatic exterior light control systems for vehicles have been developed that utilize various light sensors and, or, an array of sensors (commonly referred to as an array of “pixels” or “pixel arrays”) to control the state of external lights of a controlled vehicle. These systems may, for example, be employed to detect the headlights of oncoming vehicles and the taillights of leading vehicles and to dim, or switch, the high beam headlights of a controlled vehicle off when headlights or taillights are detected. An automatic exterior light control system is described in detail in commonly assigned U.S. patent application Ser. No. 09/800,460, to Stam et al., the disclosure of which is incorporated herein by reference. Automatic exterior light control systems employing a pixel array are capable of capturing images of the scene forward of the controlled vehicle and base the exterior light control decisions upon various aspects of the captured images.
Automatic exterior light control systems are required to accurately distinguish various features of a given scene to separately categorize scenarios which require control activity from scenarios which do not. For example, taillights of leading vehicles have to be distinguished from red traffic lights and red roadside reflectors. When the high beams of the controlled vehicle are on, it is desirous to automatically switch to low beams, or dim the high beams, when taillights of leading vehicles are detected. Conversely, detection of red traffic lights and red roadside reflectors should not invoke switching, or dimming, of the controlled vehicle's high beams.
A significant feature of sensors and optical systems for exterior light control relates to their ability to detect and accurately measure the brightness and color of small, distant, light sources. In order to perform satisfactorily, an optical system for such an application is preferably capable of identifying taillights of leading vehicles at distances of at least 100 meters and most preferably over 200 meters.
The resolution of an optical system is an important feature in accurately distinguishing between various objects within a given scene. The center-to-center distance between adjacent pixels of a pixel array is commonly referred to as the “pixel pitch.” The given pixel pitch and the associated lens system design are two significant components in deriving the corresponding optical system resolution.
A typical taillight is about 10 cm in diameter, or less. The angle subtended by such a taillight, at 200 meters, when projected upon a sensor, or pixel array, of a sharply focused optical system, is approximately 0.03°. Typical pixel arrays, with associated lens systems for use in exterior vehicle light control applications, are designed to image 0.1°-0.5° horizontally and vertically per pixel. Consequently, with known optical systems, a projection of a taillight onto a typical pixel array may be of a size substantially less than that of one pixel pitch.
In known automatic vehicle exterior light control systems, the associated small size of projected, distant, light sources severely impairs the ability of the system to accurately determine the color and brightness of the corresponding light source. This is due largely to the fact that known sensors, and individual sensors of known pixel arrays, have a non-uniform response; depending upon the region of the pixel where light is incident, the sensitivity of the pixel will vary. For example, light falling on a transistor, or other structure that does not absorb photons, within the pixel will not be absorbed at all and thus will not be detected. Additionally, the given pixel may be more or less sensitive to light falling on various regions depending on the distance between the point where a photon is absorbed and the corresponding collection node to which the generated electrons must diffuse.
U.S. Pat. No. 6,005,619, to Fossum, titled “Quantum Efficiency Improvements in Active Pixel Sensors” and incorporated in its entirety herein by reference, describes the pixel structure of a photogate active pixel for use in a CMOS pixel array suitable for use in a vehicle exterior light control system.
FIG. 26
depicts a group of four pixels from the Fossum device. As is readily seen from
FIG. 26
, there are several different materials and structures that form each pixel represented by
2600
,
2602
,
2604
and
2606
. Thus, the sensitivity of the pixel to incident light rays varies depending upon the particular region of the pixel onto which photons are incident. As discussed above, micro-lenses may be employed to focus light rays on the most sensitive area of the pixel.
Pixel non-uniformity becomes especially problematic when attempting to determine the color and brightness of small, distant, light sources. For example, the optical system described in U.S. patent application Ser. No. 09/800,460 utilizes a lens system assembly with first and second lens systems. The first lens system projects the associated field of view onto one half of the associated pixel array and the second lens system projects substantially the same field of view onto the other half of the pixel array. A red spectral filter is placed in the optical system such that the light rays projected by the first lens system are red filtered. By comparing light rays projected through the red spectral filter with the unfiltered, or complementary filtered, light rays, a relative red color of each object within the field of view is determined. When the light sources are small, distant, sources, minor misalignment of the first lens system relative to the second lens system can cause significant error in the relative color measurement. The distant light source projected by the red spectral filtering lens system may be incident onto a sensitive region of a pixel, while the light source may be projected onto an insensitive region by the second lens system, causing an erroneously high redness value. In a subsequent image, the above scenario may be reversed causing an erroneously low redness value to be attributed to the light source. Consequently, distant taillight detection of known systems is less than satisfactory in certain scenarios.
Therefore, there remains a need in the art of automatic vehicle exterior light control systems for an optical system capable of more accurately detecting the brightness and color of small, distant, light sources.
SUMMARY OF THE INVENTION
According to a first embodiment of the present invention, a lens system is provided that projects light rays emitted by a small, distant, light source onto a sensor, or pixel array, such that the projected light rays substantially cover at least one entire sensor, or at least one pixel pitch, respectively. The optical system in accordance with this first embodiment comprises a pixel array with an associated Nyquist frequency limit. The optical system has an associated spatial frequency cutoff. In the preferred optical system, the spatial frequency cutoff is less than, or equal to, the Nyquist frequency limit of the pixel array.
In another embodiment of the present invention, micro-lenses are placed proximate each pixel. Each micro-lens projects the corresponding incident light rays such that they are focused upon the most sensitive portion of the given pixel. In optical systems that employ a single sensor, or individual sensors not grouped into an array, it is preferred to use micro-lenses on each sensor.
As another alternative to the preceding embodiments, a light ray scattering film material is superimposed between the lens system assembly and the pixel array, or is integrated into the lens system assembly. Light rays projected by the lens system assembly toward the sensor, or pixel array, are scattered such that the projected light rays are incident mor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light source detection and categorization system for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light source detection and categorization system for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light source detection and categorization system for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3362922

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.