Light sensing dimming control system for gas discharge lamps

Electric lamp and discharge devices: systems – With radiant energy sensitive control means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S158000

Reexamination Certificate

active

06188177

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to control systems that control the delivery of current to electrical loads. More particularly, the present invention relates to control systems that control the amount of electrical current delivered to gas discharge lamps to effectively control the illumination of the lamps. Even more particularly, the present invention relates to a control system that incorporates a loosely coupled transformer to control the delivery of current to the lamp.
BACKGROUND OF THE INVENTION
Gas discharge lamps are widely used to illuminate relatively large areas and are actually preferred over incandescent lights in many situations for various reasons. Gas discharge lamps provide the benefit of providing equal or better illumination intensity using relatively less energy than the alternative incandescent lights. These energy efficient lamps are highly beneficial in geographic locations having a reduced power supply and in areas where cost benefits are realized by reducing energy consumption.
Although gas discharge lamps are generally more energy efficient than incandescent lamps, in large scale uses the lamps still consume significant amounts of power. Additionally, in many cases the illumination intensity generated by the lamps is actually more than necessary for a given situation. For example, in a large warehouse environments having skylights and other windows, natural daylight may actually provide most of the necessary illumination such that the gas discharge lamps actually produce supplemental and possibly unnecessary or excess light. Of course, on cloudy days and at night the gas discharge lamps provide the majority if not all the illumination required within the warehouse environment. During those times that the lamps are producing unnecessary light, the lamps are also consuming unnecessary power. Ideally, the lamps could be controlled to deliver sufficient illumination, depending on the availability of natural light, while consuming minimal power.
In many cases, the consumption of energy by the gas discharge lamps is directly related to the illumination intensity level produced by the lamps. During times when the lamps produce a relatively bright illumination intensity, a relatively higher level of the energy is typically consumed by the lamp.
Setting or controlling the circuit to deliver the proper amount of power to the lamp under variable conditions has typically required the use of a manual-type control mechanism. Such a manual control mechanism may be either a slide switch or a knob. Each of these mechanisms allow for the variable control of the illumination intensity but unfortunately also require that an operator physically manipulate the devices in order to vary the illumination intensity. This type of control is unsatisfactory in conditions where the light entering through the windows is constantly varying since the operator must continuously take the time to adjust the illumination intensity in accordance with the varying light conditions. Hence on intermittently cloudy days or at dusk the operator is continuously interrupted to adjust the illumination intensity.
Moreover, implementing a manual-type control switch introduces the possibility that the person operating the switch may incorrectly determine whether the lamp is generating the proper or optimal illumination intensity for a given situation. Manually adjusted control systems are also difficult to set since many lamps may need to be adjusted to various independent levels based on the location of the windows in the building. For instance, the lamps located far from windows or skylights most likely should be adjusted to provide more illumination than those lamps located near a window or skylight. Unfortunately, the typical control switch controls many of these lamps from one location so that the operator does not have to walk to many different locations to adjust the lights. However, this location may be relatively far from some of the lamps which decreases a person's ability to accurately detect whether the illumination intensity produced by each particular lamp is satisfactory, let alone optimal. Indeed, the operator can only guess the proper illumination intensity for each of the different zones illuminated by the various lamps.
In order to overcome these drawbacks, gas discharge lamps are generally operated at higher-than-necessary intensity levels based on worst-case scenarios. For example, on intermittent cloudy days, the lamps are generally set to provide sufficient illumination based on times when the cloud cover blocks most natural light. The result is that more illumination than necessary is generated during periods of time when the clouds have dissipated which results in unnecessary energy consumption.
It is with respect to these considerations and others that the present invention has been made.
SUMMARY OF THE INVENTION
The present invention relates to a control system for controlling the lumen output of gas discharge lamps to improve energy efficiency. One aspect of the present invention is to automatically control the lumen output of the lamps with reduced reliance on a manual control. Another aspect of the present invention is to provide a control system that can be adjusted from a position within or near the area illuminated by the lamp eliminating the estimation involved in determining the proper illumination intensity. Yet another aspect of the present invention is to provide these capabilities in the form of control modules that may be added or removed from the control system as desired. Still another aspect is to provide, as part of the automatic control module, a light sensor circuit that is relatively immune to effects of time and temperature.
To accomplish these and other aspects, the present invention relates to a control system that comprises a control circuit that automatically adjusts the illumination intensity of the gas discharge lamp based on the available light from other sources, i.e., natural light. More specifically, the control system incorporates a daylight harvester that senses the amount of light in a given area and produces a control signal based on the amount of light sensed. The control signal is conducted to the control circuit which effectively adjusts the illumination intensity of the gas discharge lamp. The control system may also incorporate a remote signal receiver which senses a remote signal and based on this remote signal, conducts a control signal to the control circuit which controls the illumination intensity of the lamp. Additionally, the daylight harvester and the remote receiver are removable from the control circuit. Moreover, the daylight harvester comprises a blind sensor in combination with the light sensor and the control signal produced by the daylight sensor is a differential control signal so that adverse effects due to time and temperature do not affect the control of the illumination intensity.
More particularly, the control system of the present invention comprises a control system for controlling power consumption of a gas discharge lamp wherein the control system comprises a light sensor which senses light and produces a control signal in response to the sensed light. The control system also comprises a control circuit which is connected to the light sensor and receives the control signal from the light sensor. Additionally, the control circuit comprises a frequency controlled dimming ballast which controls the power consumption of the gas discharge lamp by adjusting the conduction of electrical power to the gas discharge lamp in response to the control signal. The frequency controlled dimming ballast comprises a high leakage based transformer that controls the conduction of current to the gas discharge lamp in response to an oscillating driving signal.
The light sensor of one embodiment of the present invention comprises at least two light sensors wherein one of the light sensors senses ambient light conditions and the other light sensor does not sense any light conditions. Each of the light senso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light sensing dimming control system for gas discharge lamps does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light sensing dimming control system for gas discharge lamps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light sensing dimming control system for gas discharge lamps will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597884

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.