LIGHT-REACTION TYPE OPTICALLY ACTIVE COMPOUND,...

Compositions – Liquid crystal compositions

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S299610, C252S299620, C252S299700, C428S001100, C349S106000, C349S002000, C430S007000, C430S019000

Reexamination Certificate

active

06589445

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a novel light-reaction type optically active compound, a light-reaction type chiral agent which changes the helical structure of a liquid crystal, a liquid crystal composition, an optical film, a liquid crystal color filter, a recording medium, and a method of changing the twist structure of helices of liquid crystals.
2. Description of the Related Art
Recently, liquid crystal materials such as cholesteric liquid crystals and the like having a helical structure and showing various selective reflected colors by twisting power (twist angle) of the helix have become prominent. Further, due to excellent selective reflecting property and excellent color purity of selective reflected light, the materials have become widely used in optical films, liquid crystal color filters, recording media and the like.
For example, a color filter used in a color liquid crystal display or the like is generally constituted of picture elements of red (R), green (G) and blue (B), and black matrices formed for the purpose of improving display contrast in gaps between the elements. Main types of such a color filter are conventionally those obtained by dispersing a pigment in a resin, or dyeing a resin with a dye. As a production method thereof, methods are usual in which a coloring resin solution is applied on a glass substrate by spin coating or the like to form a coloring resist layer, and patterning by a photolithography method is conducted to form color filter picture elements, or coloring picture elements are directly printed on a substrate.
However, for example, a production method by printing has problems in that resolution of picture elements is low and formation of an image pattern of high accuracy is difficult, and a production method by spin coating has problems in that material loss is large and application unevenness when applying on a substrate having large area is significant. Further, in a production method by electrodeposition, a color filter having relatively high resolution and having small unevenness of a colored layer can be obtained, but the production process is complicated and management of liquids is difficult.
As described above, there is a great desire for a method which can produce a color filter having high quality at high efficiency with small material loss and in a simple manner.
On the other hand, as characteristics of a color filter, high-percentage transmission and color purity are required. Recently, improvements corresponding to the above-mentioned requirements have been attempted by optimizing a dyeing resin and kind of dye in a method using a dye, and by using a more finely dispersed pigment in a method using a pigment. However, in recent liquid crystal display (LCD) panels, requirements for the percent transmission and color purity of a color filter are extremely high. Particularly in a color filter for a reflection type LCD, compatibility between white display of paper white, contrast and color reproducibility is difficult, while color filters produced by dyeing a resin with a dye or dispersing a pigment in a resin according to conventional production methods are all color filters of light absorption type. Therefore, improvement of color purity by a further increase in percent transmission is almost at an upper limit.
Against the above-mentioned situations, a color filter utilizing polarization, having a cholesteric liquid crystal as a main component, is known. This color filter utilizing polarization shows high efficiency of utilizing light and has more remarkable abilities also in percent transmission and color purity than a color filter of light absorption type, since a certain light amount is reflected and other light is transmitted to display images in the color filter utilizing polarization. On the other hand, as a method of producing the same filter, a method in which a film is formed on a substrate using a spin coat method or the like is usually conducted from the standpoint of uniform thickness. However, this method has a problem of large material loss and is disadvantageous in the point of cost.
As a means which can solve the above-mentioned problems, can secure uniformity of color purity and the like of a color filter film, and can also realize a reduction in the number of production steps, a method using a light-reaction type chiral compound is useful. This method uses the theory that when a liquid crystal composition containing a light-reaction type chiral compound is irradiated pattern-wise with light having a reaction wavelength of this chiral compound, the reaction of the chiral compound progresses depending on the strength of the irradiation energy, and helical pitch (twist angle of helix) of the liquid crystal compound changes. Consequently, a selective reflection color is formed for each picture element simply by pattern exposure including a difference between light amounts. Namely, there is a merit that patterning for forming a color filter can be completed by one-time mask exposure using a mask having different transmission light amounts.
Therefore, a film functioning as a color filter can be formed by effecting patterning by image-wise light irradiation, and then solidifying the patterned cholesteric liquid crystal compound. This can be applied also to films for optical use or recording of images, and the like.
Particularly when a color filter is produced by one-time mask exposure or the like, it is desired that three primary colors, B (blue), G (green) and R (red), can be formed with high color purity by one-time exposure. However, when a rate of change of twist of a liquid crystal is low, sufficient color purity is not obtained. Therefore, in view of displaying three primary colors having high color purity by one-time exposure, it is necessary to use a chiral compound (chiral agent) that is capable of changing twisting power of a helical structure of a liquid crystal compound and that has a high rate of change of twist as a light-reaction type chiral compound. Namely, a range of selectively reflected hues is enlarged due to change of light amount by using a chiral compound having a high rate of change of twist.
Further, Japanese Patent Application Laid-Open (JP-A) No. 11-248943 discloses use of a polymerizable mesogene compound having an isosorbide skeleton in a chiral mother nucleus as a chiral compound constituting a polarization plate of reflection type in a wide range. This polymerizable mesogene compound can act on a liquid crystal compound to cause change of the helical structure of the liquid crystal. However, when a reflection wavelength range of a polarization plate described in the above-mentioned publication is changed, namely, the helical structure (twisting power of helix) of a liquid crystal is changed so as to show the desired selective reflection, control of the change is carried out by a mixing ratio (of amounts used) of the mesogene compound to a non-chiral compound (liquid crystal), and light and light amount thereof are not correlated at all. That is, in this publication, there is utterly no suggestion that the helical structure (twisting power of helix) of a liquid crystal is changed by changing light amount, and there is also no suggestion that compounds exemplified in the publication are useful in the point of rate of change of twisting power in response to light.
As described above, a light-reaction type chiral agent as follows has not been proposed until now. This agent has light reactivity which can change orientation structures such as the helical pitch of a liquid crystal (twisting power, twist angle of helix) and the like by controlling light amounts used in irradiation. Further, in the case of a cholesteric liquid crystal phase containing a nematic liquid crystal compound, for example, the agent is able to provide significant changes of the helical pitch (twisting power), such as a wide range of selectively reflectable wavelengths, various selective reflections and, particularly, display of three primary colors (R, G, B) at

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

LIGHT-REACTION TYPE OPTICALLY ACTIVE COMPOUND,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with LIGHT-REACTION TYPE OPTICALLY ACTIVE COMPOUND,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and LIGHT-REACTION TYPE OPTICALLY ACTIVE COMPOUND,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3016351

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.