Illumination – Light fiber – rod – or pipe
Reexamination Certificate
2002-12-03
2004-12-21
Husar, Stephen (Department: 2875)
Illumination
Light fiber, rod, or pipe
C362S572000, C362S575000, C362S555000, C362S556000, C362S583000, C362S558000, C362S554000, C362S800000, C362S268000, C362S581000, C362S455000, C385S037000, C385S036000, C356S073000
Reexamination Certificate
active
06832849
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a light radiation device which radiates light onto a radiation object site for performing tests or the like on the appearance, damage or the like of a product, a light source device, and a light connection mechanism or the like which is suitably used for the connection thereof.
2. Description of the Related Art
Conventionally, as disclosed in Japanese Unexamined Patent Publication No. 5-248820 (1993), a system is known in which a light beam is guided from a light source device such as a halogen lamp to a light radiation device via an optical fiber bundle made of a plurality of bundled optical fibers, and the light beam is radiated from this light radiation device to illuminate a piece of work. According to such a system, owing to the intervention of optical fibers, the light radiation device will have an improved degree of freedom in placement, compactification, and others irrespective of the size and shape of the light source device.
Further, in these kinds of light radiation devices, as disclosed for example in the aforementioned publication, a system is known in which light emission ends of optical fibers are held to surround a ring-shaped fiber holding member, and a light beam is directly radiated from the light emission end of each optical fiber onto a piece of work placed at the center under the fiber holding member so as to illuminate the piece of work from the surroundings. Also, since a light beam that escapes to the outside is generated at each light emission end in the above-described construction in which the light from the light emission end is directly radiated onto the piece of work, a system has been developed in which a ring lens having a ring-like shape is placed under the light emission end and the light beam is refracted by this ring lens so as to prevent the light beam from escaping, thereby making improvements in the light condensing efficiency, as disclosed in Japanese Unexamined Patent Publication No. 5-199442 (1993).
On the other hand, regarding the light source device, since the halogen lamp is hardly sufficient in terms of light intensity stability, lifetime, quick responsiveness and the like in view of the efficiency and precision in these types of product tests, a light source device using an LED has been developed as a new light source device that can make improvements on these points. Specifically, there is Japanese Unexamined Patent Publication No. 2000-21206 previously proposed by the applicant of this application. This is a light source device in which numerous LEDs are disposed on a substrate; one end of an optical fiber is bonded to the front surface of each of these numerous LEDs; and the other ends of the optical fibers are bundled and drawn out to the outside of the device body so that the light beams from the LED can be taken out via these optical fibers.
Meanwhile, in recent years, there is an increasing demand that requires precision testing by conducting bright illumination on an extremely small site such as a semiconductor chip or a soldering part of the semiconductor chip onto a printed substrate, as a piece of work to be tested. For this reason, there is a demand for condensing the light beams in a greater degree so as to radiate brighter light beams onto the radiation object site more efficiently.
However, in view of these aspects, these types of light radiation devices as taught in the prior art are insufficient in terms of light condensing area, light condensing efficiency and others. For example, in the light radiation device disclosed in Japanese Unexamined Patent Publication No. 5-199442 (1993), although the light beams can certainly be prevented from escaping to the outside by the ring lens, the circumferential components of the light beams emitted from the fiber are not refracted at all and hence are not condensed though the radial (relative to the ring lens) components of the light beams are refracted and hence are condensed, thereby providing insufficient light condensation onto a minute area. Furthermore, in the light source device disclosed in Japanese Unexamined Patent Publication No. 2000-21206, there is a limitation in introducing the light emitted from an LED efficiently into optical fibers. In addition, if the light intensity of the light source device is unreasonably raised in order to cover the above-described drawbacks, the problem of heat generation will disadvantageously increase.
SUMMARY OF THE INVENTION
Thus, a principal desired object of the present invention is to provide an illumination system of this kind for tests and others which has, on the light radiation device side, a structure that can outstandingly improve the light condensing degree and the light condensing efficiency as compared with the prior art and, on the light source device side, a structure such that the light from an LED can be introduced extremely efficiently into optical fibers and the light can be made into light suitable for illumination, whereby the current demands of tests on a piece of work can be fully satisfied in view of the light condensing area and the light condensing efficiency while making the best of the characteristics of the system in which the light radiation device and the light source device are separated with an intervention of the optical fibers.
Thus, the light radiation device according to the present invention is a light radiation device for radiating onto a radiation object site a light beam introduced via an optical fiber bundle made of a plurality of optical fibers, the light radiation device having a box that houses a fiber holding section for holding a light emission end of each of the optical fibers in a discretely disposed state and a lens holding section for holding a lens one by one proximate to or close to the light emission end of each of the optical fibers.
According to such a device, one lens is mounted onto each optical fiber in a one-to-one correspondence, so that the light condensing area can be easily made smaller. Further, since the lens can be easily disposed proximate to or close to the light emission end of the optical fiber, the light emitted from the optical fibers can be refracted without leakage, and can be radiated onto the radiation object site at an extremely high efficiency. As a result of this, one can reasonably meet the demand that requires precision testing on an extremely small site such as a semiconductor chip or a soldering part of the semiconductor chip onto a printed substrate.
Here, it is sufficient that the lenses are functionally separated one by one in respective correspondence with the optical fibers, so that the lenses need not necessarily be physically separated one by one. For example, it suffices if convex lenses are connected to each other at the peripheries thereof with the use of a thin plate or the like, thereby forming a physical integration of a plurality of convex lenses.
As a suitable embodiment for condensing the light with a fewer number of components, it is preferable that an axial line of the optical fiber at the light emission end coincides with an optical axis of the corresponding lens, and the axial line and the optical axis of the lens are directed to the radiation object site.
On the other hand, in order to make a contribution to the degree of freedom in production or the like, it is also preferable that an axial line of the optical fiber at the light emission end is shifted from an optical axis of the corresponding lens, and the optical axis of the light beam emitted from the light emission end is deflected by the lens to be directed to the radiation object site.
In order to perform condensation of light more suitably and to carry out an adjustment of focal distance more easily in accordance with the distance from the light source device to the radiation object site and the size of the radiation object site, it is preferable that the light radiation device is constructed in such a manner that the light beams each emitted from each light emission end via the lens
Konishi Jun
Masumura Shigeki
Yoneda Kenji
CCS Inc.
Husar Stephen
Zeade Bertrand
LandOfFree
Light radiation device, light source device, light radiation... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Light radiation device, light source device, light radiation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light radiation device, light source device, light radiation... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3313988