Optical waveguides – Noncyclindrical or nonplanar shaped waveguide
Reexamination Certificate
1998-08-20
2001-09-25
Bovernick, Rodney (Department: 2874)
Optical waveguides
Noncyclindrical or nonplanar shaped waveguide
C385S133000, C385S901000, C362S035000, C362S561000, C349S065000
Reexamination Certificate
active
06295405
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a light pipe for a backlighting system such as is used in backlighting a flat panel liquid crystal display (LCD), and more particularly, to a non-scattering backlighting system having an optical input arranged to provide a uniform light distribution to the LCD.
2. Description of the Related Art
Flat panel displays, such as LCDs used in laptop computers, generally incorporate a backlighting system to illuminate a liquid crystal based display panel. Important requirements of the backlighting system are to provide a substantially uniform light distribution and to provide a sufficiently intense light distribution over the entire plane of the display panel. To accomplish these requirements, the backlighting system typically incorporates a light pipe to couple light energy from a light source to the LCD panel.
In scattering backlighting systems an array of diffusing elements are disposed along one surface of the light pipe to scatter light rays incident thereto toward an output plane. The output plane is coupled to the LCD panel, coupling the light rays into and through the LCD panel. While a scattering backlighting system offers the ability, by controlling the distribution of the scattering media on the scattering surface, to control the light distribution, it does not offer an ability to control the angle of light distribution. Much of the light energy produced by the backlighting system is wasted because it is scattered in directions that are not useful to the LCD display user. Because much of the light energy is not directed to the user and is thus wasted, scattering backlighting systems lack the desired light energy intensity or brightness.
A non-scattering backlighting system is disclosed and described in the aforementioned commonly assigned U.S. Pat. No. 5,995,742. Non-scattering backlighting systems offer the advantage that both the light distribution and the angle of distribution may be controlled. Thus, the light energy may be directed in a way to make more efficient use of the available light energy, i.e., to direct substantially all of the light energy toward the user. A term often used to describe non-scattering backlighting systems is “deterministic” because the output point of a light ray is known based upon its input position. Thus, it may be said that a non-scattering backlighting system correlates the rays of input light energy and the rays of output light energy.
This correlation is advantageously used in the design of the backlighting system to ensure that a majority of the light energy is directed to the user. The correlation of input light rays to output light rays in a non-scattering backlighting system may also lead to a potential disadvantage arising from imaging at the light input appearing at the light output. If there is any distortion of the light energy at the input, this distortion will also appear at the output. The distortion may result from roughness or discontinuities in the light source or the input optics. Generally such distortions will result in an area of non-uniform light intensity or a shadow in the output. Another source of distortion is the walls of the light pipe perpendicular to the light source. The walls must be made extremely smooth and flat or else they result in a distortion or shadow in the output.
A particular distortion that is observed in non-scattering backlighting systems is the formation of a diagonal line across the output plane of the backlight. It has been observed that distortions of the corner interface of the side wall to the input surface of the light pipe, due to manufacturing limitations in the construction of the light pipe, are imaged in the output as a dark, diagonal line. While it is possible to polish and smooth the surfaces to reduce the appearance of the distortion, these operations are labor intensive and therefore impractical in the mass production of light pipes.
Additionally, it has been observed that non-uniformity in the output of the cold cathode fluorescent light (CCFL) source may cause distortions and shadows in the output. More particularly, the CCFL has inherent dim regions adjacent the electrodes at each end of the CCFL tube. These dim regions are areas where the light output from the CCFL is not uniform, and the light output is substantially diminished as compared to a center section of the tube. Not only do these dim areas image into the output plane, but they also contribute to and exacerbate the appearance of the diagonal line.
Thus, there is a need for an improved light pipe and backlighting system.
SUMMARY OF THE INVENTION
The present invention provides a light pipe for a backlighting system. The light pipe includes an input surface, a substantially planar back surface, a substantially planar top surface, and a first side surface and a second side surface. The top surface is arranged substantially parallel or at an angle to the back surface and in spaced relation thereto, and the input surface, the first side surface, and the second side surface are disposed between the top surface and the bottom surface defining a cavity between the back surface and the top surface. Each side wall surface interconnects with the input surface at a transition surface. The transition surface is curved to optimize light distribution density in the output and to reduce distortion in the input.
In an alternate preferred embodiment of the present invention, the transition surface is arranged to preserve total internal reflection over its entire surface. In this manner, the transition surface is preferably arranged as a compound hyperbolic curve extending from the side surfaces to the input surface.
In still another preferred embodiment of the present invention, the transition surface is arranged to optically obscure, from the output, an intersection between the input surface and each of the first side surface and the second side surface.
Also, and in accordance with the present invention, the transition surface is optimized to obtain the principal characteristics of the present invention using ray tracing techniques including inverse ray tracing techniques.
In particular embodiments of the present invention, the light pipe may be arranged to couple to a LCD device, and in this regard, the light pipe operates as a backlighting device.
In another aspect of the present invention, a backlight system includes a light pipe constructed in accordance with the principles of the present invention. A linear light source is coupled adjacent the input surface. The linear light source includes at least one region of non-uniform light distribution. The light pipe and the light source are arranged to ensure that the region of non-uniform light distribution does not lie adjacent an input of the light pipe.
In one preferred embodiment of the present invention, the light source is a cold cathode fluorescent light. The region of non-uniform light distribution is the two dim regions adjacent the electrodes. In accordance with the present invention, the light source is made longer than a length of the input surface such that the dim regions are disposed, respectively, beyond a first end and a second end of the input surface.
Other features and advantages of the invention will become apparent to those skilled in the art from the following detailed description and the accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
REFERENCES:
patent: 4043636 (1977-08-01), Eberhardt et al.
patent: 4870484 (1989-09-01), Sonehara
patent: 4915479 (1990-04-01), Clarke
patent: 5233679 (1993-08-01), Oyama
patent: 5363294 (1994-11-01), Yamamoto et al.
patent: 5613751 (1997-03-01), Parker et al.
patent: 592165
Jannson Tomasz P.
Kupiec Stephen A.
Laine Jeffrey A.
Rud Michael
Vasiliev Anatoly
Bovernick Rodney
Nilles & Nilles S.C.
Physical Optics Corporation
Stahl Michael J
LandOfFree
Light pipe for a backlighting system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Light pipe for a backlighting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light pipe for a backlighting system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2474618