Light emitting diode display system

Computer graphics processing and selective visual display system – Plural display systems – Tiling or modular adjacent displays

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S055000, C345S082000, C345S903000, C345S905000, C040S452000, C040S605000, C040S606010, C040S729000, C040S730000

Reexamination Certificate

active

06677918

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a light emitting diode (LED) display system for large-scale displays.
BACKGROUND OF THE INVENTION
LED display systems used for large-scale merchandising, architectural, stage, and theatrical displays are known in the art of luminance. Such displays, also known as curtain displays, which typically are viewed by an audience at a distance of more than 50 meters, require a large and complex support structure to hold the LEDs. A plurality of LEDs mounted on such a display support structure are arranged in a grid, or matrix, at geometrically predetermined positions. The LED luminescence is projected to viewers as images in response to signals received in accordance with data sent from a controller. LED luminescence can be projected in the full color spectrum as still images or as animated images. The support structures for the LEDs generally used for large-scale displays are made of rigid metal materials that are heavy and as such are difficult to handle. In addition to the physical problems of transportation, assembly and disassembly, the time needed for erection of such displays becomes yet another problem factor. The heavy structure presently required for large scale LED stage displays often requires that existing stage support structure be reinforced, which increases the time and cost of installation.
Large-scale LED display systems that have responded to the problems set forth above are as follows:
A) U.S. Pat. No. 5,900,850 issued to Bailey et al. on May 4, 1999, discloses a large scale, portable, image display system that includes a plurality of panels with each panel comprising a web structure formed of a plurality of spaced flexible strap members that extend vertically between the top and bottom sides of each panel and a plurality of spaced flexible strap members extending generally horizontally connected to the vertically extending strap members. A plurality of LEDs are mounted on the strap members at predetermined spaced positions to form a matrix of diode light sources for projecting an image. The panels are interconnected and are connected to a support member.
Although Bailey asserts that the display system projects animated images, it is self-evident that the flexible strap members are limited in capability to project animated images with the predetermined precision required. Nylon is suggested as a strap material. It is particularly self-evident that no amount of tensioning is capable of creating a substantially planar surface. The horizontally extending strap members are particularly subject to sagging and distortion however slight with a significant loss of the precision required particularly for animated imagery. In an outdoor environment particularly wind would be expected to be a negative factor. Also heat and rain would also be expected to affect the straps. Claim 1 of Bailey sets forth a “generally horizontally extending strap members' when other strap members are “extending vertically.” FIG. 4 therein shows tensioning means for the vertical straps only with the horizontal straps being permanently secured to the vertical straps. Even with the questionable assumption that the vertical straps can be tensioned to the extent that the diodes affixed to one vertical strap cannot shift however slightly relative to the diodes affixed to other vertical straps, it is difficult further to assume that the diodes affixed to one of the horizontal straps cannot significantly shift relative to the diodes affixed to the other horizontal straps and in fact relative to the diodes affixed to the vertical straps.
B) Examples of such lightweight net, or mesh, support structure that mounts LEDs for large-scale luminance display that can be assembled and disassembled rapidly are known. References to this net support structure are as follows:
1) Japanese Application No. 10-170055 filed Jun. 17, 1998, and its counterpart published WO 99/66482 Japan on Dec. 23, 1999.
The LED flexible net support structure described above has advantages over the heavy and difficult to erect and transport LED rigid assembly boards. One advantage of the LED net display mount is that it is light in weight and thus is relatively easy to transport, assemble and disassemble. Another advantage of the LED net display is its flexibility so that it can be easily curved when mounted in position for illumination display. Another advantage is that objects positioned behind the display net can be seen by observers through the apertures in the net so that such objects can be illuminated in various ways simultaneous with image illumination by the mounted LEDs.
A major disadvantage of a net-type LED display structure is that it is difficult to precisely position the individual LED pixels so that each LED beam projects in unison with all other LED beams in a required direction in response to data signals received from a controller. Such difficulty in exact performance technique is compounded when animation illumination is desired.
Other inventions that relate to the field of LED display systems, are as follows:
1) U.S. Pat. No. 5,150,445 issued to Toyoda et al. on Sep. 22, 1992;
2) U.S. Pat. No. 5,428,365 issued to Harris et al. on Jun. 27, 1995
3) U.S. Pat. No. 5,532,711 issued to Harris on Jul. 2, 1996
4) U.S. Pat. No. 5,940,683 issued to Holm et al. on Aug. 17, 1999;
5) U.S. Pat. No. 5,956,003 issued to Fisher on Sep. 21, 1999;
6) U.S. Pat. No. 6,101,750 issued to Blesener et al. on Aug. 15, 2000;
7) U.S. Pat. No. 6,115,016 issued to Yoshihara et al. on Sep. 5, 2000; and
8) U.S. Pat. No. 6,150,996 issued to Nicholson et al. on Nov. 21, 2000;
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a large-scale LED display that is lightweight and easily transported, assembled and disassembled and that can support a large number of LED pixels that project the full color spectrum in an animation display.
It is a further object of the present invention to provide a large-scale lightweight LED display that comprises a plurality of frames supporting a number of LEDs that can be easily transported and assembled and disassembled in a short time and that can project full color animation illumination displays in accordance with video input signals.
It is another object of the present invention to provide a large-scale lightweight LED display that can be easily assembled and can be seen through so that objects or persons behind the display can be seen by observers of the LED display so that various stage effects in addition to the animation displays are possible.
In accordance with these objects and other objects that will become apparent in the course of this disclosure, there is provided a large-scale light emitting diode (LED) image display system positioned on a surface such as a stage comprising a plurality of rigid frames positioned in at least one vertical stack so as to form a planar vertical display. A plurality of vertical rigid bar members are mounted to each of frames the bar members being equally spaced apart with a plurality of LED pixels being mounted to each of the bar members. The pixels are equally spaced apart so as to form a matrix of pixels. The LED pixels project colored light beams defining images. A rod for bearing the weight of the frames in a tension mode is connected to each of the frames. The weight-bearing rods have a top connector and a bottom connector. The rod top connector of the top frame is removably secured to an overhead support while the bottom frame is spaced from the surface. A bottom ring connector of the weight-bearing rod of each stacked frame is removably connected to a top hook connector of each adjoining stacked frame. Each of the weight-bearing rods are threadably connected to a turnbuckle so as to tightly position all adjoining frames of the stack. Included are controls for receiving external video signals and processing the signals as either still images and animated images in color.
The present invention will be better understood and the objects and important features, other than those specific

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light emitting diode display system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light emitting diode display system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light emitting diode display system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3209730

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.