Light emitting diode assembly for flashlights

Illumination – Self powered lamp – Having plural lamp bulbs or lamp sockets

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S205000, C362S800000

Reexamination Certificate

active

06502952

ABSTRACT:

BACKGROUND
1. Field of the Invention
Generally, the invention relates to light sources for flashlights. More specifically, the invention relates to such light sources wherein at least one light emitting diode produces the light which is subsequently collimated into a beam of light.
2. Description of the Prior Art
It is estimated that in 1998 over two hundred (200) million collimating reflector type flashlights were produced. Conventionally known flashlights which utilize a collimating reflector operate with incandescent lamps (bulbs) which have a filament placed in a geometric position compatible with the focal point of the collimating reflector.
Incandescent lamps (bulbs) are constructed with a ‘light center length’ or LCL which is defined as the best strait line that can be passed through the majority of the lighted coil. A collimated beam of light, defined by ‘beam candle power’, is created when the coil is properly positioned to a focal point of the collimating reflector.
As a source of illumination, conventional light emitting diodes are generally limited to small flashlights such as key chain type lights, small pen lights and small flashlights which do not utilized collimating reflectors to enhance the collimation of the produced light. This is due primarily to the narrow view angle of the produced light and the lack of utilization of light bending surfaces or other diffusion methods. Attempts have been made to use light emitting diodes in incandescent lamp bases. These attempts generally have been limited to providing a convenient light source for use in existing flashlights where the produced light does not interact with the collimating reflector of those flashlights. It is important to note that these replacement incandescent lamps using light emitting diodes were not designed to operate with the collimating reflector to produce a beam of light prior to applicants invention.
Conventional, narrow projection angle, light emitting diode light sources lack light bending surfaces to broaden the narrow view angle of the produced light. The light emitting diode, in conventional form, does not make a satisfactory source of light for conventional flashlights because the point source of light is on a plane. The conventional light emitting diode is formed by the deposition of semiconductor materials and phosphors to a substrate in a planar configuration which inhibits use as a broad spectrum light source. Conventional collimating reflector flashlight require the broad spectrum light source.
The Polar light distribution of conventional light emitting diodes is at best one hundred and twenty-five (125) degrees and most commonly fifteen (15) degrees. Conventional collimating reflector flashlights require a polar distribution of three hundred and sixty (360) degrees, (radially), for maximum efficiency.
Some progress has recently been made to provide for a widening of the projection angle of light emitting diodes. A principle method of widening the projection angle of light emitting diodes involves placement of the light emitting diode chip within a tiny cup or bowl reflector base. Work in this area has resulted in widening the projection angle from the common fifteen (15) degrees to as much as one hundred and twenty (120) degrees and slightly beyond. Typically phosphor, or another suitable material, is used as a coating over the light emitting diode chip which then acts to diffuse the light produced by the light emitting diode chip to enable the tiny reflector base to widen the projection angle. These new style light emitting diode chips are ideally suited for use with the present invention.
Both the conventional light emitting diodes and the new style coated light emitting diodes use an acrylic or plastic molded lens package without any indices of refraction or other diffusing methods.
Various methods exist in the art to alter the angle of projection of light. Such conventional methods to alter the angle of projection of light include lighted panels and annunciators, amongst others. Your applicant is unaware of utilization of such methods with light emitting diode light sources wherein the produced light may be efficiently used with flashlights having a conventional collimating reflector.
Light emitting diodes which produce white light, offer a new and superior light source for collimating reflector type flashlights in that they provide superior lamp life and battery run time. Conventional light emitting diode light sources are unsatisfactory for direct use in flashlights with collimating reflectors due to a narrow viewing angle of the light emitting diode, generally between fifteen (15) degrees and thirty (30) degrees. When the conventional light emitting diode is positioned facing away from the collimating reflector, this narrow viewing angle projects the available light beyond the walls of the collimating reflector. When the conventional light emitting diode is positioned facing toward the collimating reflector, this narrow viewing angle projects the available light to only a portion of the wall of the collimating reflector. The curved collimating reflector wall therefore cannot properly act upon the produced light of conventional light emitting diode light sources to collimated the light beam. The new style light emitting diodes which produce wider projection angles suffer similar deficiencies to those experienced by conventional light emitting diodes.
For the above mentioned reasons, mere substitution of a light emitting diode light source for the conventional incandescent lamp in flashlights, where the flashlight has a curved collimating reflector, will fail because the substitute light emitting diode light source and the existing curved collimating reflector will fail to cooperate to produce an acceptable collimated light beam.
Light emitting diodes are superior to conventional incandescent lamps (bulbs) because they: 1) require less power, 2) have a longer life, 3) have a greater resistance to both shock and vibration and 4) provide generally higher color temperature.
Due to the long life of the light emitting diode light source it is conceivable that a flashlight having a light emitting diode as the light source would never require replacement of the light source. Due to the lower power requirement of the light emitting diode light source, batteries of such flashlights would last up to 10 times as long as batteries of conventional incandescent flashlights. This combination provides for considerable cost and environmental savings.
Efforts have been made to provide for a flashlight having a suitably narrow projection beam of light which utilize light emitting diodes as the light source. These efforts avoid use of a collimating reflector and rely upon projection of the light from the light emitting diode directly onto an optical focusing lens which then projects the light passing therethrough into the narrow projection beam of light. Such flashlights, while producing an acceptable beam of light, are extremely expensive to manufacture when compared to collimating reflector type flashlights due to the expense involved with manufacture of the optical focusing lens. For this reason such flashlights are not considered applicable to the present invention.
A great need exists for collimating reflector type flashlights which have low current draw, long life and which are inexpensive to manufacture. Numerous attempts have been made to produce collimating reflector type flashlights which have the desired low current draw, long life and low manufacturing costs. These attempts have been less efficient than desired. The present invention substantially fulfills these needs. Utilization of the designs of the present invention will fill a long felt need and create a new market niche.
SUMMARY
In view of the foregoing disadvantages inherent in the known types of light sources for flashlights, your applicant has devised a method of positioning a light dispersion location of a light emitting diode lamp (bulb) assembly at a relative elevated position generally matching a relative elevated positi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light emitting diode assembly for flashlights does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light emitting diode assembly for flashlights, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light emitting diode assembly for flashlights will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3072137

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.